
The Edge of Large-Scale Optimization in
Transportation and Machine Learning

by

Sébastien Martin
M.S. in Applied Mathematics, École polytechnique (2015)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

May 15, 2019
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Patrick Jaillet
Dugald C. Jackson Professor

Department of Electrical Engineering and Computer Science
Co-director, Operations Research Center

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimitris Bertsimas

Boeing Professor of Operations Research
Sloan School of Management

Co-director, Operations Research Center
Thesis Supervisor



2



The Edge of Large-Scale Optimization in Transportation and

Machine Learning

by

Sébastien Martin

Submitted to the Sloan School of Management
on May 15, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

This thesis focuses on impactful applications of large-scale optimization in transporta-
tion and machine learning. Using both theory and computational experiments, we
introduce novel optimization algorithms to overcome the tractability issues that arise
in real world applications. We work towards the implementation of these algorithms,
through software contributions, public policy work, and a formal study of machine
learning interpretability. Our implementation in Boston Public Schools generates
millions of dollars in yearly transportation savings and led to important public policy
consequences in the United States.

This work is motivated by large-scale transportation problems that present signifi-
cant optimization challenges. In particular, we study the problem of ride-sharing, the
online routing of hundreds of thousands of customers every day in New York City. We
also contribute to travel time estimation from origin-destination data, on city routing
networks with tens of thousands of roads. We additionally consider the problem of
school transportation, the scheduling of hundreds of buses to send tens of thousands
of children to school everyday. This transportation problem is related to the choice
of school start times, for which we also propose an optimization framework.

Building on these applications, we present methodological contributions in large-
scale optimization. We introduce state-of-the-art algorithms for scheduling problems
with time-window (backbone) and for school bus routing (BiRD). Our work on travel
time estimation tractably produces solutions to the inverse shortest path length prob-
lem, solving a sequence of second order cone problems. We also present a theoretical
and empirical study of the stochastic proximal point algorithm, an alternative to
stochastic gradient methods (the de-facto algorithm for large-scale learning).

We also aim at the implementation of these algorithms, through software contri-
butions, public policy work (together with stakeholders and journalists), and a collab-
oration with the city of Boston. Explaining complex algorithms to decision-makers
is a difficult task, therefore we introduce an optimization framework to decomposes
models into a sequence of simple building blocks. This allows us to introduce for-
mal measure of the “interpretability” of a large class of machine learning models, and

3



to study tradeoffs between this measure and model performance, the price of inter-
pretability.

Thesis Supervisor: Dimitris Bertsimas
Boeing Professor of Operations Research
Sloan School of Management
Co-director, Operations Research Center

Thesis Supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor
Department of Electrical Engineering and Computer Science
Co-director, Operations Research Center

4



Acknowledgments

As the exciting journey of my PhD comes to an end, what will remain are the fantastic

people I got to share it with.

I had the privilege to work with two research advisors, Dimitris Bertsimas and

Patrick Jaillet, who also served as role models. I wish I only had a fraction of the

energy and optimism of Dimitris. We shared many adventures, including public school

committee meetings, testifying at the Rhodes Island State House and many successful

Thanksgiving at his house! Dimitris’ dedication to his students is truly impressive

and I cannot help but share his dreams of good impact that operations research and

analytics can have on our society. Witnessing his love of his job was instrumental in

my decision to start a academic career. Patrick’s wisdom and humanity also made

him the perfect advisor. I could always come to him for advice, and not only about

research. On top of being an extremely sharp mathematician, Patrick can stimulate

and encourage research curiosity. He gave me a freedom of research I could not have

dreamt of.

I would also like to thank my thesis committee members Asu Ozdaglar and Vivek

Farias for their valuable feedback. I am very humbled that Asu accepted to join the

committee of one of her game theory students, and for her help with my proximal

work. And I thank Vivek for reviewing my research in the context on the ORC

student paper competition, as well as his help with my interpretabibility work.

An important milestone of this PhD was the unexpected collaboration with Boston

Public Schools (BPS). Discovering this new environment gave me the most precious

gift: purpose. None of this would have been possible without the courage and kind-

heartedness of John Hanlon, COO of BPS. His tireless commitment to Boston and

its children is both humbling and contagious. Will Eger’s endless supply of will and

energy also fueled this whole collaboration (who else can make a full slide deck in less

than a hour?). I was lucky to gain both a research partner and a friend. I think that

John and Will’s devotion to the public service should be an example for the world.

Working with John and Will had its moments: the 2am pizzas at BPS, the moments

5



of pure joy when we overcame obstacles, the moments of despair after the hardest

school committee meetings, the Edelman Award... I would do everything again a

thousand times. I also want to thank David Scharfenberg from the Boston Globe,

Kade Crockford from the ACLU and Joi Ito from the MIT media lab for believing

with us in the importance of the choice of school start times.

Arthur Delarue is a major contributor to the research of this thesis. With his

incredible learning ability, mastery of words and humanity, Arthur could become a

famous writer, charismatic politician, brilliant scholar, or maybe all of the above.

I have worked with Arthur since the second year of my PhD, when he was an un-

dergraduate student at MIT transitioning from physics to operations research. Four

years later, I have gained a formidable research partner and friend who also started a

PhD. The (too) many Domino’s pizzas, the sleepless nights spent building last minute

routes for the school buses of Boston, and the few times we thought we had a (maybe)

“world-changing” research breakthrough in one of these tiny whiteboard rooms.

The Operations Research Center (ORC) has been a formidable environment, and

I want to thank my friends Alex, Arthur, Emma, Jerry and Joel from the REFS

(Resources for Easing Friction and Stress) for their work to make the ORC even

better. The ORC is also a tight-knit community, and I thank all my fellow students

for these five amazing years. In particular, my lab-mates and friends Ali, Anna,

Andrew, Andrew, Cécile, Colin, Elisabeth, Emily, Jessica, Joey, max, Max, Mathieu,

Rim and Yeesian. I also thank Profs. Ali Aouad, Antoine Désir, Joey Huchette,

Andrew Li and Will Ma for their mentorship during the academic job market. I

would share with my friend Ilias Zadik my hardest probability and life questions,

discuss recurring sequences with Jean Pauphilet and exchange crazy research ideas

with Max Biggs. ORC mornings could not have started without a high-five from Nico.

Miles Lubin introduced me to Julia, the programming language used for all chapters

of this thesis. The ORC could not run without Laura Rose and Andrew Carvalho,

and I thank them for always helping me with my thousand daily questions. And

none of this would have happened without my friend Jack Reilly and Pr. Alexandre

Bayen convincing me to start this PhD, and I would not even have applied without

6



the advice of Maximilien Burq. And I still follow Maximilien’s advice, thank you for

our many long conversations.

Life in Cambridge would not have been the same without my roommates and

friends: Max, Maximilien, Sébastien, Lucie, Max, Hugh, Spencer, Anaëlle and Alena.

Khadija enlightened the last year of my PhD, and I hope many more years.

Being far away from France was not easy for me and my family, and I want to

thank my parents Carlos and Véronique, and my siblings Ludovic and Marilou for

their extraordinary love and support.

7



This work has been supported by the the National Research Foundation of Singa-

pore Grant No. 015824-00078, by the Office of Naval Research grants N00014-12-1-

0999 and N00014-16-1-2786, and by CIBC (Canadian Imperial Bank of Commerce).

8



To my parents, Carlos and Véronique



10



Contents

1 Introduction 23

1.1 The Impact of Optimization in Transportation . . . . . . . . . . . . . 25

1.1.1 Online Vehicle Routing for Ride-Sharing . . . . . . . . . . . . 26

1.1.2 Optimizing Schools’ Start Time and Bus Routes . . . . . . . . 27

1.2 Algorithms for Large-Scale Optimization . . . . . . . . . . . . . . . . 28

1.2.1 Optimization Solvers in Practice . . . . . . . . . . . . . . . . . 29

1.2.2 Scalable and Practical Travel Time Estimation . . . . . . . . . 30

1.2.3 The Stochastic Proximal Point Algorithm . . . . . . . . . . . 31

1.3 Bridging the Gap Between Optimization and Implementation . . . . . 33

1.3.1 The Impact of Visualization and Software . . . . . . . . . . . 33

1.3.2 The Interface with Policy . . . . . . . . . . . . . . . . . . . . 35

1.3.3 Model Interpretability . . . . . . . . . . . . . . . . . . . . . . 35

1.4 Thesis Outline and Main Contributions . . . . . . . . . . . . . . . . . 36

1.4.1 Chapter 2 - Online Vehicle Routing: The Edge of Optimization

in Large-Scale Applications . . . . . . . . . . . . . . . . . . . 37

1.4.2 Chapter 3 - Travel Time Estimation in the Age of Big Data . 37

1.4.3 Chapter 4 - Optimizing Schools’ Start Time and Bus Routes . 39

1.4.4 Chapter 5 - The Benefits of the Stochastic Proximal Point Al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4.5 Chapter 6 - The Price of Interpretability . . . . . . . . . . . . 41

2 Online Vehicle Routing:

The Edge of Optimization in Large-Scale Applications 43

11



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 The Online Taxi Routing Problem . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Model and Data . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Offline Routing: the Edge of Optimality . . . . . . . . . . . . . . . . 53

2.3.1 A Re-Optimization Approach to Online Taxi Routing . . . . . 53

2.3.2 Offline Solution Methods . . . . . . . . . . . . . . . . . . . . . 54

2.3.3 Application on Synthetic Data . . . . . . . . . . . . . . . . . . 60

2.3.4 The Edge of Optimality . . . . . . . . . . . . . . . . . . . . . 63

2.4 Scaling Optimization to Real-World Applications . . . . . . . . . . . 64

2.4.1 Sparsifying the Flow Graph . . . . . . . . . . . . . . . . . . . 65

2.4.2 The Backbone Algorithm . . . . . . . . . . . . . . . . . . . . . 67

2.4.3 The Local Backbone Algorithm . . . . . . . . . . . . . . . . . 69

2.4.4 Taxi Routing in NYC . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.5 Offline Results for Large-Scale Taxi Routing . . . . . . . . . . 74

2.5 Online Taxi Routing in NYC . . . . . . . . . . . . . . . . . . . . . . . 76

2.5.1 Re-optimization and Warm-Starts . . . . . . . . . . . . . . . . 76

2.5.2 Online Solution Methods . . . . . . . . . . . . . . . . . . . . . 79

2.5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 80

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.7.1 Insertions and Greedy Heuristic . . . . . . . . . . . . . . . . . 87

2.7.2 Local-Improvement and 2-OPT . . . . . . . . . . . . . . . . . 89

12



3 Travel Time Estimation in the Age of Big Data 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 The Need for a Generalized Approach to Travel Time Estimation 94

3.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2.1 Problem Statement: Estimating Travel Times From Data . . . 97

3.2.2 MIO Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.3 Iterative Path Generation . . . . . . . . . . . . . . . . . . . . 102

3.3 Solving Large-Scale Problems . . . . . . . . . . . . . . . . . . . . . . 103

3.3.1 Adapting the shortest path constraint . . . . . . . . . . . . . . 104

3.3.2 Towards a Convex Objective . . . . . . . . . . . . . . . . . . . 105

3.3.3 A Tractable Algorithm . . . . . . . . . . . . . . . . . . . . . . 106

3.3.4 A General Model . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 Performance on Synthetic Data . . . . . . . . . . . . . . . . . . . . . 109

3.4.1 Synthetic Networks and Virtual Data . . . . . . . . . . . . . . 109

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Performance on Real-World Data . . . . . . . . . . . . . . . . . . . . 116

3.5.1 A Large-Scale Data Framework . . . . . . . . . . . . . . . . . 116

3.5.2 Applying a Discrete Model to Real-World Data . . . . . . . . 118

3.5.3 Evaluating Results at the Scale of the City . . . . . . . . . . . 119

3.5.4 Impact of Data Density and Comparison with Data-Driven

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 Optimizing Schools’ Start Time and Bus Routes 129

4.1 School Transportation: A BiRD’s Eye View . . . . . . . . . . . . . . 133

4.1.1 Single-School Problem . . . . . . . . . . . . . . . . . . . . . . 133

4.1.2 Routing Multiple Schools . . . . . . . . . . . . . . . . . . . . . 135

4.1.3 Evaluating the Routing Algorithm . . . . . . . . . . . . . . . 135

4.1.4 Application in Boston . . . . . . . . . . . . . . . . . . . . . . 136

13



4.2 Formulating the STSP . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.1 Transportation Costs . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.2 Optimizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.3 Evaluating three-tier systems . . . . . . . . . . . . . . . . . . 139

4.3 Bell Times in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.1 Gridlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3.2 The Greater Good . . . . . . . . . . . . . . . . . . . . . . . . 143

4.3.3 Application in Boston . . . . . . . . . . . . . . . . . . . . . . 144

4.4 Technical Details: BiRD Routing Algorithm . . . . . . . . . . . . . . 145

4.4.1 Stop Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4.2 Single-School Routing . . . . . . . . . . . . . . . . . . . . . . 147

4.4.3 Scenario Selection . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.4.4 Bus Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.5 Technical Details: Routing Experiments . . . . . . . . . . . . . . . . 156

4.5.1 Synthetic Experiments and Results . . . . . . . . . . . . . . . 156

4.5.2 Comparison with Existing Methods . . . . . . . . . . . . . . . 159

4.6 Technical Details: Bell Time Selection . . . . . . . . . . . . . . . . . 166

4.6.1 Transportation Costs . . . . . . . . . . . . . . . . . . . . . . . 166

4.6.2 Bell Time Optimization on Synthetic Data . . . . . . . . . . . 168

4.6.3 GQAP-Representable Objectives . . . . . . . . . . . . . . . . 171

4.6.4 Boston Community Survey . . . . . . . . . . . . . . . . . . . . 174

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5 The Benefits of the Stochastic Proximal Point Algorithm 177

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1.1 Existing Work on Stochastic Proximal Point Methods . . . . . 179

5.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.2.1 Stochastic Convex Quadratic Optimization . . . . . . . . . . . 182

5.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

14



5.3 Benefits of Proximal: One Dimension . . . . . . . . . . . . . . . . . . 186

5.3.1 Setting and Simplifications . . . . . . . . . . . . . . . . . . . . 186

5.3.2 Optimal Step Schedule . . . . . . . . . . . . . . . . . . . . . . 189

5.3.3 Deterministic Curvature, Random Gradient . . . . . . . . . . 193

5.3.4 Random Curvature, Deterministic Gradient . . . . . . . . . . 195

5.3.5 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.4 Benefits of Proximal: Ordinary Least Squares . . . . . . . . . . . . . 215

5.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.4.4 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . 223

5.5 Proximal Tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.5.1 Low Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.5.2 High Dimensions, the Ap-prox Algorithm . . . . . . . . . . . . 228

6 The Price of Interpretability 235

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.1.1 Interpretable Machine Learning . . . . . . . . . . . . . . . . . 235

6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.2 A Sequential View of Model Construction . . . . . . . . . . . . . . . 238

6.2.1 Selecting a Model . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.2.2 Interpretable Steps . . . . . . . . . . . . . . . . . . . . . . . . 239

6.3 The Tradeoffs of Interpretability . . . . . . . . . . . . . . . . . . . . . 241

6.3.1 From paths to models . . . . . . . . . . . . . . . . . . . . . . 241

6.3.2 Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.4 A Coherent Interpretability Loss . . . . . . . . . . . . . . . . . . . . . 247

6.4.1 Coherent Path Interpretability Losses . . . . . . . . . . . . . . 248

6.4.2 A Coherent Model Interpretability Loss . . . . . . . . . . . . . 249

6.5 Interpretability Losses in Practice . . . . . . . . . . . . . . . . . . . . 251

6.5.1 The Price of Interpretability . . . . . . . . . . . . . . . . . . . 251

15



6.5.2 Computational Considerations . . . . . . . . . . . . . . . . . . 254

6.5.3 Interpretable Paths and Human-in-the-Loop Analytics . . . . 257

6.6 Application: Linear Regression . . . . . . . . . . . . . . . . . . . . . 258

6.6.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

6.6.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6.8.1 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . 263

6.8.2 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . 266

6.8.3 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . 266

7 Conclusions 269

16



List of Figures

1-1 Boston Public Schools routing software. . . . . . . . . . . . . . . . . . 34

2-1 Taxi simulation software. . . . . . . . . . . . . . . . . . . . . . . . . . 48

2-2 Synthetic routing network, metropolis. . . . . . . . . . . . . . . . . . 59

2-3 Time for MIOoptimal to find the optimal solutions. . . . . . . . . . . 62

2-4 A taxi-routing simulation on the Manhattan routing network in NYC. 72

2-5 Varying the mean prior request time. . . . . . . . . . . . . . . . . . . 82

2-6 Varying the supply-demand balance. . . . . . . . . . . . . . . . . . . 83

2-7 Varying the time windows size. . . . . . . . . . . . . . . . . . . . . . 84

3-1 Close-up of Manhattan with the arc travel times estimated between 9

and 11 AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3-2 Model networks used to test our travel time estimation and routing

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3-3 Results of our algorithm on a square network for a congestion gradient. 113

3-4 Results of our algorithm on a square network with two congested neigh-

borhoods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3-5 Edge travel times in Manhattan estimated by our algorithm on week-

days in May 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3-6 Zoom on edge travel times in Manhattan estimated by our algorithm

on weekdays in May 2016. . . . . . . . . . . . . . . . . . . . . . . . . 121

3-7 Evolution of paths studied by our algorithm, original paths. . . . . . 123

3-8 Evolution of paths studied by our algorithm : path convergence. . . . 124

3-9 Edge travel times in Manhattan (9-11AM) for increasing data input. . 127

17



4-1 Geographic visualization of the school bus routing problem. . . . . . . 131

4-2 Overview of BiRD algorithm. . . . . . . . . . . . . . . . . . . . . . . 134

4-3 Bell time optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4-4 Equity and current start times in Boston. . . . . . . . . . . . . . . . . 140

4-5 Optimizing preferences is hard. . . . . . . . . . . . . . . . . . . . . . 141

4-6 Bell time selection tradeoffs. . . . . . . . . . . . . . . . . . . . . . . . 142

4-7 Diagram of the scenario selection graph for a small example of a school

bus routing problem with three schools. . . . . . . . . . . . . . . . . . 152

4-8 Geographic visualizations of two school districts. . . . . . . . . . . . . 157

4-9 Analysis of performance of algorithm components on synthetic data. . 158

4-10 Results of bell time optimization algorithm on synthetic data. . . . . 170

5-1 Visualizing proximal and gradient steps. . . . . . . . . . . . . . . . . 184

5-2 Sample curves of 𝑓(., 𝑆). . . . . . . . . . . . . . . . . . . . . . . . . . 188

5-3 Errors of the optimal schedule, proximal and gradient steps. . . . . . 198

5-4 Error of the optimal schedule, with mini-batching. . . . . . . . . . . . 210

5-5 Examples of linear data distributions. . . . . . . . . . . . . . . . . . . 215

5-6 Error of the solution paths for SAA, gradient and proximal - standard

setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5-7 Optimal Schedule Limitations. . . . . . . . . . . . . . . . . . . . . . . 221

5-8 Step schedule sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . 222

5-9 Varying the noise parameter 𝜎2
𝜖 . . . . . . . . . . . . . . . . . . . . . . 223

5-10 Varying the condition number 𝑚. . . . . . . . . . . . . . . . . . . . . 224

5-11 Varying the distribution of the starting point. . . . . . . . . . . . . . 224

5-12 Varying the dimension 𝑑. . . . . . . . . . . . . . . . . . . . . . . . . . 225

5-13 Computational time in standard setting. . . . . . . . . . . . . . . . . 227

5-14 Computational time in higher dimension. . . . . . . . . . . . . . . . . 229

5-15 Counting conjugates steps in approx algorithm. . . . . . . . . . . . . 233

6-1 Illustration of the interpretable path framework with the three examples240

6-2 Visualization of an interpretable path leading to 𝑡bad. . . . . . . . . . 242

18



6-3 Visualization of an interpretable path leading to 𝑡good. . . . . . . . . . 243

6-4 Interpretability tradeoffs for toy problem (6.4). . . . . . . . . . . . . . 247

6-5 Pareto front between interpretability loss ℒ(𝑚) = ℒ𝛾(𝑚) (with 𝛾 = 1)

and cost 𝑐(𝑚) on the toy OLS problem (6.4). . . . . . . . . . . . . . . 252

6-6 Pareto fronts between model interpretability and cost, 𝛾 ∈ {0.1, 10} . 254

6-7 Price of interpretability for decision trees of depth at most 2 on the

simplified iris data-set. . . . . . . . . . . . . . . . . . . . . . . . . . 256

6-8 Pareto-efficient models from the perspective of interpretability and cost.261

6-9 Example of a Pareto-efficient interpretable path. . . . . . . . . . . . . 262

19



20



List of Tables

2.1 Offline algorithms performance in various settings. . . . . . . . . . . . 61

2.2 Offline algorithms performance on large-scale routing problem. . . . . 74

3.1 RMSLB of estimation for a varying amount of data and randomness 𝜎. 112

3.2 Effect of the time of the day on the taxi-trip data-set . . . . . . . . . 122

3.3 Effect of data density on 𝑘-nearest neighbors (k-NN). . . . . . . . . . 126

4.1 Comparison of BiRD with existing methods on first set of synthetic

benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.2 Comparison of BiRD with existing methods on second set of synthetic

data benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.3 Comparison of BiRD with other methods on large-scale synthetic data

benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

21



22



Chapter 1

Introduction

What time should schools start?

We had to answer this seemingly simple question for a research project with

Boston Public Schools, one of the oldest public school districts in the United States.

The surprising challenges hidden behind this question are representative of the work

presented in this thesis. 1

Schools start times could simply be chosen to comply with the preferences of

teachers, children and parents. But this choice is much more complicated. Perhaps

the greatest obstacle to adjusting school start times is the effect of changes on school

transportation. Over 50 percent of U.S. schoolchildren rely on an army of half a

million yellow school buses to travel to and from school every day. In Boston, trans-

portation accounts for over 10% of the district’s billion dollars budget. To reduce

transportation spending, school districts such as Boston stagger the start and end

times of different schools, allowing vehicles to be re-used several times throughout

the day. Therefore, choosing when schools start requires to think through the opti-

mization of their complex school bus system.

Transportation systems This example shows how deeply transportation systems

are intertwined in many aspects of our day-to-day life. Being able to carefully design

and control these systems using optimization can therefore lead to positive societal
1We will explore this question in details in Chapter 4.

23



impact. And examples are legion. Millions of schoolchildren hop on a school bus

everyday We rely on our smartphones travel time estimations for our daily commutes.

Lyft and Uber depend on complex optimization systems to dispatch their ride-sharing

fleets. And the promise of self-driving vehicles could only increase this recent trend.

This thesis will focus on such applications.

Large-scale optimization Optimizing the school start times and the school bus

system of a large city is not an easy task, and has been mostly done by hand in

Boston, as existing software could not provide a satisfying answer. Indeed, the prob-

lem of school bus routing is a NP-hard vehicle routing and scheduling problem, whose

objectives, decisions and constraints typically change year to year. With more than

a hundred schools and tens of thousands of students, we cannot hope to find optimal

solutions. Typical routing software therefore has to resort to simple optimization

heuristics such as greedy route construction or local improvement, which is not dis-

similar to what is done by hand in Boston. This raises the more general question of the

computational tradeoffs of large-scale optimization. The availability of massive data

sets makes it possible to define new real-world applications that are larger than what

state-of-the-art optimization algorithms and solvers can handle. Therefore, problems

that matter the most are sometimes solved using simplistic optimization methods,

potentially resulting in sub-optimal solutions. This thesis will explore this tradeoff

in details. We will introduce optimization algorithms that manage to have both the

flexibility of integer optimization, and the tractability required for transportation

problems of this scale. We will then broaden this study by adding a theoretical and

experimental study of the stochastic proximal point algorithm. This alternative to

stochastic gradient methods for large-scale learning will also allow us to illustrate the

computational tradeoffs of large-scale optimization.

Implementation Creating an algorithm that can efficiently optimize the school

start times and bus routes is only the first step towards a successful implementation

and real world impact. Many other steps are needed to go from an algorithm to

24



a change in the status quo. Or collaboration with Boston Public Schools led to

the implementation of a new school bus routing algorithm that saved the district

millions of dollars. And our study of school start time choice had national coverage

in the U.S., and led to the first policy change on this subject in thirty years in

Boston. Such implementation does not only rely on accurate modeling and a tractable

optimization algorithm. For example, building robust software and visualizations was

also a significant part of the work. This is also why most chapters of this thesis

are also associated with extensive software contributions. But what is the use of

software if people do not want to use it? Policy work, and interactions with policy

makers, stakeholders and sometimes journalists is also what can lead to a successful

implementation, and was a key part of our implementation in Boston. Nonetheless,

these interactions rely on our capacity to explain our models and algorithms. Building

on this fact, this thesis also explores, conceptualizes and optimizes various facets of

“interpretability” for a large class of models in machine learning.

Section 1.1 introduces the impactful applications of optimization in transportation

that motivated our work. Section 1.2 connects these applications to the tradeoffs of

large-scale optimization, and positions our methodological contributions within this

space. Section 1.3 describes all the steps that are needed to bridge the gap between

a successful optimization algorithm and a successful implementation, a key focus of

this thesis. Finally, Section 1.4 is a detailed outline of the chapters of this thesis while

stating its contributions to the field.

1.1 The Impact of Optimization in Transportation

Urban transportation is going through a rapid and significant evolution. In the re-

cent past, the emergence of the Internet and of the smart-phone technologies has

made us increasingly connected, able to plan and optimize our daily commute while

large amounts of data are gathered and used to improve the efficiency of transporta-

tion systems. Today, real-time ridesharing companies like Uber or Lyft are using

these technologies to revolutionize the taxi industry, laying the ground for a more

25



connected and centrally controlled transportation structure, and building innovative

systems like car-pooling. Tomorrow, self-driving and electrical vehicles will likely be

the next transportation revolution. A major positive impact on the economy and

the environment can be achieved when improving vehicle routing efficiency, using

this newly available data and connectivity to its full extent. We present here the

applications of transportation optimization that will be explored in this thesis.

1.1.1 Online Vehicle Routing for Ride-Sharing

We consider the decision problem that companies like Uber and Lyft face everyday:

which customer should be matched to which vehicle. This is an important problem: in

New York City, there are more than 500,000 Yellow Cab, Uber or Lyft rides everyday

[102].

One simple solution is to dispatch the closest available vehicle when a customer

requests a ride. But given the massive amount of available data, including traffic es-

timations, demand forecasts and anticipated requests, these simple myopic strategies

can leave a lot on the table 2 and increase congestion and carbon emissions.

An alternative is to use the available information to “plan ahead” and make better

decisions through a more involved optimization approach. This relates to the litera-

ture of dynamic vehicle routing, which is the general problem of dispatching vehicles

to serve a demand that is revealed over time. We formulate the ride-sharing dispatch

problem as a special case of dial-a-ride problem [9], where we assign each customer

with a pickup time-windows and vehicles can transport only one customer at a time.

With the recent interest in real-time ride-sharing, several large-scale online deci-

sion systems for taxi scheduling have been proposed and implemented, though these

applications focus more on managing large-scale decision systems than optimizing

vehicle actions. [96] balances supply and demand in a discretized space and time,

but does not consider microscopic routing decisions. [105, 104, 92, 122] implement

large-scale systems of taxi-pooling, in which vehicles can transport several customers

at the same time. These approaches focus on how to best match different requests,
2Chapter 2 shows that we can use 15% less vehicles using optimization to assign the requests.

26



but less on scheduling vehicles from request to request. [148] studies taxi routing with

autonomous vehicles, taking into account congestion in a network-flow formulation.

This online problem exhibits an interesting tradeoff: on one hand finding the right

vehicle for each customer given some information about the future is an optimization

problem for which optimized solutions can significantly outperform simple heuristics.

On the other hand, this problem requires to dynamically compute, within seconds,

decisions involving tens of thousands of vehicles. This prevents the use of most

vehicle routing optimization algorithms. We will show in Chapter 2 that we can

scale the traditional optimization approaches through the use of the local-backbone

algorithm, and outperform the state-of-the-art methods.

1.1.2 Optimizing Schools’ Start Time and Bus Routes

Maintaining a fleet of buses to transport students to school is a major expense for U.S.

school districts. Bus routes need to be designed every year to transport the children

to and from school everyday, finding routes that minimize costs and maximize service

quality is the school bus routing problem. In order to reduce costs by reusing buses

between schools, many districts spread start times across the morning. However,

assigning each school a time involves estimating the impact on transportation costs

and reconciling additional competing objectives. Facing this intricate optimization

problem, school districts must resort to ad hoc approaches, which can be expensive,

inequitable, and even detrimental to student health. For example, medical research

consensus is that early high school starts are impacting the development of an entire

generation of students and constitute a major public health crisis [32, 34, 43, 44, 58,

106].

The problem of school bus routing has been addressed extensively [50, 109]. It is

typically decomposed into three main subproblems: stop assignment, i.e., choosing

locations where students will walk from their homes to get picked up; bus routing, i.e.,

linking stops together into bus trips; and bus scheduling, i.e., combining bus trips into

a route that can be served by a single bus. State-of-the-art optimization algorithms

exist for these subproblems in isolation [123, 61]. However, the literature on optimally

27



combining subproblem solutions is less extensive. Approaches typically involve formu-

lating the school bus routing problem as a large combinatorial optimization problem

which can be solved using metaheuristics, including local search [128], simulated an-

nealing [35], and special-purpose vehicle routing heuristics [26, 25]. Special-purpose

algorithms have also been designed to address variants of the school bus routing prob-

lem, allowing “mixed loads” – students from different schools riding the bus together

[128, 25, 110], bus transfers [23], or arrival time windows [61, 128, 35, 110].

Unfortunately, many tractable general-purpose algorithms do not consider addi-

tional constraints (fleet heterogeneity, student-specific needs) and thus lack portabil-

ity. We will introduce BiRD in Chapter 4, a new algorithm for school bus routing that

both outperforms the state-of-the-art on large instances, and has flexibility needed

for practical problems. The School Time Selection Problem, or the problem of choos-

ing school start time has been very little studied from an optimization point of view

[138]. No existing algorithms address bell time selection in conjunction with bus

routing [61], or take into account the multiple policy consequences of the choice of

start times. We will also bridge this gap in Chapter 4.

1.2 Algorithms for Large-Scale Optimization

These applications are all associated with large-scale optimization problems. The

ride-sharing problem in New York City requires to deal with hundreds of thousands

of requests every day. School bus routing in Boston is a vehicle routing and schedul-

ing problem that has two orders of magnitude more students than what could be

solved to optimality. One alternative typically seen in these examples is the use of

simple optimization heuristics like greedy insertions or local improvement [41, 128].

But these heuristics do not have the flexibility of with traditional optimization frame-

works such as linear optimization, second order cone optimization and mixed integer

optimization. Indeed, using such general frameworks offer the possibility to quickly

implement and update the multiple objectives and constraints that arise in practice.

They can also leverage the powerful optimization solvers that build on decades of

28



research, as discussed in Section 1.2.1. But many of these formulations and solvers

do not scale to the large optimization problems we consider. Ideally, we would like

to design algorithms that will retain the modeling flexibility of mixed integer formu-

lations while conserving tractability. This thesis explores this tradeoff for the special

cases of ride-sharing and school district transportation optimization we introduced,

but also in the more general examples of travel time estimation (Section 1.2.2) and

the stochastic proximal point algorithm (Section 1.2.3).

1.2.1 Optimization Solvers in Practice

The work of chapters 2, 3, 4 and 6 of this thesis relies heavily on the use of state-of-the-

art optimization solvers like Gurobi [65] and Mosek [2]. We cannot understate how

useful they were in our large-scale optimization applications. First, even if finding

provably optimal solutions to mixed integer optimization problems can be NP-hard,

in many instances solvers can actually scale well to the typical problem sizes seen in

practice. This could be surprising given the notorious difficulty of integer optimization

and it has not always been the case. Actually, combining the computer performance

increase and the solver progress between 1991 and 2015, the overall speedup factor for

mixed integer optimization is approximately 2 trillion[55]! This impressive improve-

ment is unfortunately not enough to find optimal solutions for most of the problem we

faced in this thesis. But we nonetheless use mixed-integer formulations as a building

block of our algorithms, as they provide many advantages.

First, the layer of mathematical abstraction provided by these solvers allows to

quickly modify objectives or add constraints without breaking the whole code. As an

example, our work with Boston Public Schools taught us the challenges of modeling a

real-world complex optimization problem. Indeed, the stakeholders do not necessarily

know the exact objectives and constraints they need, and a long communication

process is needed between the researcher and the decision-maker. The ability of solvers

to quickly handle additional constraints or objectives proved to be tremendously

important for the applications presented in this thesis.

Furthermore, we noticed that using these solvers significantly improved the speed

29



of the coding process, and several factors contribute to this speedup. First, the use of

the programming language Julia [20] and its optimization package JuMP [91] proved

to be extremely efficient. This high-performance language has the ability to handle

a large collection of optimization solvers in a seamless way. We can also easily inter-

face solvers input and output with traditional code and algorithms, which simplify

the creation of hybrid optimization algorithms that rely on extensive communication

between the code and the solver.

Additionally, the debugging process, which takes a significant fraction of the cod-

ing time for large research projects, is significantly simplified by the use of solvers.

Indeed, their ability to understand high level math formulations that avoid the bur-

den of low-level coding, as well as enforcing constraints and identify the broken ones

in the case of infeasibility reduces significantly the need for code debugging.

1.2.2 Scalable and Practical Travel Time Estimation

Chapter 3 will present an example of large-scale optimization algorithm for travel

time estimation, which was a major need of our transportation projects in NYC and

Boston.

The problem of inferring traffic patterns from diverse measurements is indeed a

fundamental step behind the resolution of many complex questions in transportation

and logistics. A simple cost function on the individual arcs of the network can often

form a building block of a more complex network study, such as recent work by [114]

presenting a novel understanding of resilient networks. Furthermore, many network

problems specifically require a travel time estimate for each arc: for instance, [101],

who develop a new model for traffic assignment that takes into account network

uncertainty, present an approach starting from a prior estimate of the expected travel

times of individual arcs in the network. Even in examples such as the aforementioned

work or that of [77], both of which generally consider travel time to be a stochastic

quantity, a good estimate for the network travel times is a valuable asset in order to

define a prior or an uncertainty set for this uncertain quantity, laying the groundwork

to answer more complex questions about the network.

30



To estimate travel times, we will use easily gatherable “origin-destination" (OD)

data, that only records the time and location at the beginning and at the end of

a trip, as, for example, collected by taxis or cellphone towers. Logging this data

instead of high-density floating-car data increases the privacy of the taxi driver and

passenger because the details of the followed route are not recorded. It also treats

the network as a black box, only making measurements when the user enters and

exits. OD data can be gathered for different purposes, and the methods we develop

here in the context of vehicle traffic can be extended to other types of networks,

including railways, subways, and bicycle and pedestrian networks (see recent studies

such as [70]), or combinations of such networks. Nevertheless, this generality makes

the travel time estimation harder: the problem of simultaneously determining paths

and travel times based on origin-destination data only is close to the Inverse Shortest

Path Length Problem (ISPL), an NP-hard problem which has also received some

attention by [76].

Chapter 3 will introduce a solver-based large-scale optimization approach, solving

a sequence of second order cone problems to fit large amounts of travel time data (up

to millions of data-points) from various sources to a network model.

1.2.3 The Stochastic Proximal Point Algorithm

A good example of the tradeoffs of large-scale optimization is the wide-spread use of

stochastic gradient methods for large-scale machine learning.

We consider the following convex stochastic optimization problem

min
𝑥∈𝒳

𝐹 (𝑥) = E𝑆 [𝑓(𝑥, 𝑆)] (1.1)

where 𝒳 ⊂ R𝑑 is a closed convex set, 𝑆 is a random variable, 𝑓(., 𝑆) are closed

convex functions for each value 𝑆. These problems have many applications in statisti-

cal learning [72, 149], but also stochastic optimization and simulation. In the context

of machine learning, 𝑓(𝑥, 𝑆) can represent the loss function of a model parametrized

by 𝑥 on a uniformly random data point represented by 𝑆, and (1.1) is equivalent to

31



minimizing the expected loss over the data-set. For example, an ordinary least square

problem would correspond to

𝑓(𝛽, 𝑆) = (𝑋 ′
𝑆𝛽 − 𝑦𝑆)

2

where 𝑋𝑆 and 𝑦𝑆 represent the feature and label of a uniformly sampled data-point.

Instead of knowing the distribution of 𝑆, we consider the case where we have

the possibility to draw in dependent random samples and use them iteratively to

solve (1.1). Lately, the large amounts of data that are available for machine learning

applications make this stochastic setting particularly relevant for large-scale learning

[24].

In the unconstrained case (𝒳 = R𝑑), the de facto algorithms for solving (1.1)

are the stochastic (sub)gradient methods [24, 98, 115, 100], first introduced by [119]

for smooth problems. Starting from a solution 𝑥0, each iteration 𝑘 ≥ 1 draws an

independent sample 𝑆𝑘 ∼ 𝑆 and updates the previous solution using a sub-gradient

step of size 𝜇𝑘 ≥ 0 on 𝑓(., 𝑆𝑘):

𝑥𝑘 = 𝑥𝑘−1 − 𝜇𝑘𝑔𝑘 where 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘−1, 𝑆𝑘) (1.2)

These methods has guarantees of convergence, and it is used successfully in large-scale

stochastic optimization [24, 149]. But the choice of step schedule can be challenging

[98], and strong assumptions are needed for convergence.

Interestingly, the sub-gradient step is also the minimizer of the following optimiza-

tion problem:

𝑥𝑘 = argmin𝑥 (𝑓(𝑥𝑘−1, 𝑆𝑘) + 𝑔′𝑘(𝑥− 𝑥𝑘−1)) +
1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2

with 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘−1, 𝑆𝑘)

(1.3)

The term in parenthesis is a first order approximation of 𝑓(., 𝑆) around 𝑥𝑘−1. If this

approximation with the function itself, we get the stochastic proximal point algorithm

32



[121, 21, 132, 3, 112]:

𝑥𝑘 = argmin𝑥∈𝒳 𝑓(𝑥, 𝑆) +
1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2 (1.4)

This algorithm presents an interesting tradeoff. It enjoys better non-asymptotic

convergence and stability than stochastic gradient [3], but is computationally expen-

sive. We will study it in Chapter 5 and show that the optimization edge it provides

can compensate for its computational limits, and make it a competitive alternative

to stochastic gradient methods.

1.3 Bridging the Gap Between Optimization and Im-

plementation

Once a positive use of analytics is found, and tractable optimization algorithms are

created, the journey to their implementation can still be long. Nonetheless, re-

searchers have many ways to make this step easier, and we explore a few examples in

this thesis.

1.3.1 The Impact of Visualization and Software

Visualizations and good software can be tremendously important for applied research.

The benefits are twofolds: it makes it easier to share ideas and convince people, but

also helps a lot develop a deeper understanding of the research and generate new

ideas.

Visualizations and software are amongst the key contributions of this thesis. We

share an extensive micro-simulation software for vehicles in large cities [16, 13]. We

also built a piece of software (mostly open-sourced) that is used every year by Boston

Public Schools to decide the routes of their buses [14], and is illustrated in Figure 1-1.

In Spring 2017, our ability to share our routing solutions with Boston Public School’s

transportation team in a visual way was instrumental in their decision to use them.

33



(a) Routing web-application.

(b) Real time school bus simulations

Figure 1-1: The visualization software developed for Boston Public Schools. The first
picture is a screenshot of the web application we developed to share the outputs of
our school bus routing algorithm with the city of Boston. Each student, school, route
and bus schedules can be explored individually on the map (courtesy of Google Maps.
The second picture is a screenshot of the real-time school bus simulation engine we
built to have a representation of the buses moving around the city (buses are yellow
and schools are in green).

34



This would later save millions of dollars to be reinvested in the education of the

children of the district.

1.3.2 The Interface with Policy

Modeling a real world problem is an important part of any optimization application.

But there is a limit to any model, and for the implementation to be successful, it is

important to get a constant feedback from stakeholders and policymakers.

In the case of the optimization of Boston’s schools start times, the policy compo-

nent was extremely important, as these decisions affect most parents in the city. It

was unanimously voted that these times should be chosen in a way that is equitable

and healthy for the students. The intense public debate that followed in December

2017 in Boston had us exchange a lot with the stakeholders and media, including the

Wall Street Journal [95] and the Boston Globe [125]. We noticed first hand how our

algorithms and statistics were being used for various political means. Research that

interacts with policy should strive for excellence in clarity, as researchers that can

participate to these public debates and be understood can do a lot of good.

1.3.3 Model Interpretability

When exchanging with policymakers, stakeholders and journalists, the interpretabil-

ity of the optimization models and algorithms is a necessity. The models that are

implemented or viewed positively by the public were in our experience always the

most interpretable. This motivated a new line of research, and we explore in this the-

sis the meaning and tradeoffs of interpretability in the context of machine learning

models.

Model interpretability, and its tradeoff with predictive accuracy, are of significant

interest to the machine learning community [59]. However, a major challenge in this

line of research is that the very concept of interpretability is hard to define and even

harder to quantify [89]. Many definitions of interpretability have a “know it when

you see it" aspect which makes quantitative analysis difficult, though several recent

35



works [54, 63] have introduced new paradigms that could help overcome the ad hoc

nature of existing approaches.

Fortunately, the absence of a universally agreed-upon definition of interpretabil-

ity has not prevented extensive research in the development of interpretable models.

Decision trees [28, 15] are considered interpretable for their discrete structure and

graphical visualization, as are close relatives including rule lists [86, 144], decision

sets [84], and case-based reasoning [80]. Other approaches include generalized addi-

tive models [90], i.e. linear combinations of single-feature models, and score-based

methods [133], where point values for each feature can be summed up into a final

“score”.

In the case of (generalized) linear models, interpretability often comes down to

sparsity, a topic of extensive study over the past twenty years [73]. Sparse models

are characterized by a small number of nonzero coefficients, meaning that the target

variable only depends on a small subset of the input features. Training sparse mod-

els can be done through regularization, e.g. using LASSO [131], or by using special

algorithms including forward/backward stepwise regression [130] and least-angle re-

gression [57]. Very recently, mixed-integer optimization approaches have been used

to solve the sparse regression problem exactly [18, 19].

In Chapter 6, we will introduce a framework that generalizes these examples and

provide a way to quantify and optimize the “interpretability” of a large class of mod-

els.

1.4 Thesis Outline and Main Contributions

This thesis consists of two parts. Chapters 2, 3 and 4 describe our work on large-

scale optimization for transportation applications. Chapters 5 and 6 study broader

methodological tools with applications in machine learning. Chapter 7 concludes our

work and discusses potential extensions.

36



1.4.1 Chapter 2 - Online Vehicle Routing: The Edge of Opti-

mization in Large-Scale Applications

With the emergence of ride-sharing companies that offer transportation on demand at

a large-scale and the increasing availability of corresponding demand data-sets, new

challenges arise to develop routing optimization algorithms that can solve massive

problems in real time. In this chapter, we develop an optimization framework, coupled

with a novel and generalizable backbone algorithm, that allows us to dispatch in real

time thousands of taxis serving more than 25,000 customers per hour. We provide

evidence from historical simulations using New York City routing network and yellow

cabs data to show that our algorithms improve upon the performance of existing

heuristics in such real-world settings.

This research was done in collaboration with Dimitris Bertsimas and Patrick Jail-

let, and is published in Operations Research [16].

The contributions of this work include:

1. Introducing the backbone and local-backbone algorithms, novel algorithms for

scheduling problems with time-windows that outperform the existing alterna-

tives. This algorithm can solve large-scale scheduling problems with thousands

of customers in under a second, which was not possible before, and its core idea

generalizes to a large class of optimization problems.

2. The modeling of a complex real-time ride-sharing problem.

3. An open-source simulation, optimization and visualization engine to run the

online algorithms with real demand and city data.

1.4.2 Chapter 3 - Travel Time Estimation in the Age of Big

Data

Twenty-first century urban planners have identified the understanding of complex

city traffic patterns as a major priority, leading to a sharp increase in the amount

and the diversity of traffic data being collected For instance, taxi companies in an

37



increasing number of major cities have started recording metadata for every individual

car ride. In this chapter, we show that we can leverage network optimization insights

to extract accurate travel time estimations from such origin-destination data, using

information from a large number of taxi trips to reconstruct the traffic patterns in an

entire city on a variety of timescales. We develop a method that tractably exploits

origin-destination data, and draws from its optimization framework the flexibility

needed to take advantage of other sources of traffic information. Using synthetic

data, we establish the robustness of our algorithm to uncertainty, and display its

ability to significantly reduce input variance. We show empirically that our algorithm

can leverage any available amount of data, even in a high-variance environment, to

provide insights about urban traffic patterns on different scales, leading to accurate

travel time estimations throughout the network.

This research was done in collaboration with Dimitris Bertsimas, Arthur Delarue

and Patrick Jaillet, and is published in Operations Research [13].

The contributions of this work include:

1. A probabilistic modeling of a network-based travel time estimation problem

with simplistic assumptions and traffic rules. This orthogonal take on the traffic

estimation literature sacrifices modeling accuracy for tractability, which allows

us to handle large amounts of origin-destination data and obtain accurate and

interpretable travel time estimates.

2. An approximation algorithm for the Inverse Shortest Path Length Problem,

involving solving a sequence of Second Order Cone Problems.

3. Software to load real city networks and estimate travel times from origin desti-

nation data.

38



1.4.3 Chapter 4 - Optimizing Schools’ Start Time and Bus

Routes

Maintaining a fleet of buses to transport students to school is a major expense for

school districts. To reduce costs by reusing buses between schools, many districts

spread start times across the morning. However, assigning each school a time involves

estimating the impact on transportation costs and reconciling additional competing

objectives. Facing this intricate optimization problem, school districts must resort

to ad hoc approaches, which can be expensive, inequitable, and even detrimental to

student health. For example, there is medical evidence that early high school starts

are impacting the development of an entire generation of students and constitute a

major public health crisis. We present an optimization model for the school time

selection problem (STSP), which relies on a school bus routing algorithm that we call

bi-objective routing decomposition (BiRD). BiRD leverages a natural decomposition

of the routing problem, computing and combining sub-problem solutions via mixed

integer optimization. It significantly outperforms state-of-the-art routing methods,

and its implementation in Boston has led to $5 million in yearly savings, maintain-

ing service quality for students despite a 50-bus fleet reduction. Using BiRD, we

construct a tractable proxy to transportation costs, allowing the formulation of the

STSP as a multi-objective generalized quadratic assignment problem. Local search

methods provide high-quality solutions, allowing school districts to explore tradeoffs

between competing priorities and choose times that best fulfill community needs. In

December 2017, the development of this method led the Boston School Committee

to unanimously approve the first school start time reform in 30 years.

This research was done in collaboration with Dimitris Bertsimas and Arthur De-

larue, and is published in Proceedings of the National Academy of Sciences of the

United States of America [14].

The contributions of this work include:

1. A new algorithm (BiRD) for school bus routing that outperforms the state-of-

the-art on standard benchmarks.

39



2. The implementation of this routing algorithm in Boston, that currently saves

the city five million dollars each year.

3. The modeling of the school start time selection problem.

4. A multi-objective optimization framework based on generalized quadratic as-

signment to optimize the school start times.

5. Policy and media impact that raised national awareness of the importance of

the choice of schools start times.

6. Open source software and benchmark instances.

1.4.4 Chapter 5 - The Benefits of the Stochastic Proximal

Point Algorithm

In the context of solving stochastic convex optimization problems, we present a de-

tailed theoretical and experimental comparison study of the stochastic proximal point

algorithm and the popular stochastic (sub)gradient methods. Asymptotic conver-

gence as well as stability have been studied, but our focus is to understand when

proximal point should be used in practice. This requires being able to precisely char-

acterize the differences in the transient phase of convergence, as well as taking into

account the computational requirements. To this effect, we study the simple exam-

ple of stochastic quadratic convex unconstrained problems. In one dimension, this

allows us to define an optimal step schedule and therefore to be able to compare the

algorithms in a way that does not depend on the choice of step size. This approach

highlights how the commonly use technique of mini-batching (variance reduction) fa-

vors the proximal algorithm. We experimentally generalize these insights in higher

dimensions, and compare the algorithms from a computational point of view, which

reveals that proximal steps can be surprisingly efficient. We finally introduce an

approximation algorithm to solve the proximal problem using conjugate gradient,

that significantly outperforms both stochastic gradient and stochastic proximal point

steps.

40



This research has been done in collaboration with Dimitris Bertsimas and Patrick

Jaillet.

The contributions of this work include:

1. An theoretical study of the behavior of stochastic proximal point and gradient

steps on one-dimensional convex-quadratic cost functions using optimal step

schedules.

2. An experimental generalization of these findings to higher dimensions.

3. A study of the error of the stochastic proximal point algorithm focusing on

computational time and mini-batching, which are typically overlooked in the

literature.

4. The approx algorithm that uses conjugate gradient methods to make proximal

steps computationally competitive in high-dimensions.

1.4.5 Chapter 6 - The Price of Interpretability

Interpretability is often a desirable characteristic of quantitative models, such as ma-

chine learning models, especially in the context of human-in-the-loop analytics. When

predictive models are used to support decision-making on complex and important top-

ics, understanding a model’s “reasoning” can increase trust in its predictions, expose

hidden biases, or reduce vulnerability to adversarial attacks. However, the concept of

interpretability remains loosely defined and application-specific. In this chapter, we

introduce a mathematical framework in which models are constructed in a sequence

of interpretable steps. We show that for a variety of models, a natural choice of

interpretable steps recovers standard interpretability proxies (e.g. sparsity in linear

models). We then generalize these proxies to yield a parametrized family of consistent

measures of model interpretability. This formal definition allows us to quantify the

“price” of interpretability, i.e. the tradeoff with predictive accuracy. We demonstrate

practical algorithms to apply our framework on real and synthetic data-sets.

41



This research has been done in collaboration with Dimitris Bertsimas, Arthur

Delarue and Patrick Jaillet.

The contributions of this work include:

1. The modelling of an incremental model framework to capture many aspects

generally associated with interpretability in the literature.

2. A formal and general definition of model “interpretability”.

3. An novel application of this framework to linear models.

42



Chapter 2

Online Vehicle Routing:

The Edge of Optimization in

Large-Scale Applications

2.1 Introduction

Urban transportation is going through a rapid and significant evolution. In the re-

cent past, the emergence of the Internet and of the smart-phone technologies has

made us increasingly connected, able to plan and optimize our daily commute while

large amounts of data are gathered and used to improve the efficiency of transporta-

tion systems. Today, real-time ridesharing companies like Uber or Lyft are using

these technologies to revolutionize the taxi industry, laying the ground for a more

connected and centrally controlled transportation structure, and building innovative

systems like car-pooling. Tomorrow, self-driving and electrical vehicles will likely be

the next transportation revolution. A major positive impact on the economy and the

environment can be achieved when improving vehicle routing efficiency, using this

newly available data and connectivity to its full extent.

A field that can make such important contributions is vehicle routing, i.e., the

optimization of each vehicle actions to maximize the system efficiency and throughput.

43



In the special case of taxi routing, we decide which taxi or ride-sharing vehicle to assign

to each ride request. This setting is typically online, as there is little prior demand

information available and the vehicle actions have to be decided in a dynamic way.

There is more and more central control of these vehicle actions, allowing the design of

strategies that surpass myopic agent behaviors. Furthermore, real-world applications

are generally at a decidedly large-scale: everyday, there are more than 500,000 Yellow

Cab, Uber or Lyft rides in New York City — see [102].

In this chapter, we present a tractable rolling-horizon optimization strategy for

online taxi routing that can be adapted to a variety of applications. Our formulation

is guided by the increased degree of control and prior information available in today’s

ride-sharing dispatching systems. We introduce a novel approach to make vehicle

routing optimization formulations tractable at the largest practical scales, involving

tens of thousands of customers per hour. This approach is general and can be extended

to a variety of vehicle routing problems. We implement these online strategies on real

taxi demand data in New York City, dispatching thousands of vehicles in real time

and outperforming state-of-the-art algorithms and heuristics, thus showing the edge

of optimization.

2.1.1 Related Work

Dynamic vehicle routing is the general problem of dispatching vehicles to serve a

demand that is revealed in real time.

In the pick-up and delivery problem, vehicles have to transport goods between

different locations. When vehicles are moving people, the routing problem is referred

to as dial-a-ride in [9]. Taxi routing is a special case of dial-a-ride problem with time-

windows, where vehicles can transport only one customer at a time, with pick-up

time windows but no destination time windows. Customers are also associated with

a pick-up time window, which is a typical model of customer flexibility in diverse

applications of vehicle routing as in [49, 4, 36]. This constraint can be relaxed, and

vehicle routing with soft time windows, for example in [71], penalizes a late pick-

up instead of disallowing it. We use “hard” time windows in this work, though our

44



approach can be extended to the soft time window case.

[113] argues that taxi routing has received relatively small attention in the field of

vehicle routing, as the practical problem sizes are typically large, and last-minute re-

quests leave “limited space for optimization”. Nonetheless, with the emergence of ride-

sharing smart-phone applications, it has become easier to request for a last-minute

ride even when the available vehicles are far away, and to book a ride in advance.

Such possibilities can be modeled in vehicle routing formulation using pick-up time

windows and prior request times, and have been studied for different applications in

[75, 145]. We will demonstrate that the additional prior information they provide can

be leveraged when optimizing the routing decisions, even at the largest scale.

With the recent interest in real time ride-sharing, several large-scale online deci-

sion systems for taxi scheduling have been proposed and implemented, though these

applications focus more on managing large-scale decision systems than optimizing

vehicle actions. [96] balances supply and demand in a discretized space and time,

but does not consider microscopic routing decisions. [105, 104, 92, 122] implement

large-scale systems of taxi-pooling, in which vehicles can transport several customers

at the same time. These approaches focus on how to best match different requests,

but less on routing vehicles from request to request. [148] studies taxi routing with

autonomous vehicles, taking into account congestion in a network-flow formulation.

Several strategies have been proposed for dynamic vehicle routing. Simple online

routing algorithms can be studied in a worst-case approach using competitive ratios as

in [78]. However, when some prior information is available, practical approaches are

re-optimization and rolling-horizon algorithms — see [9, 141]: a “static” (or “offline”)

solution is constantly updated as new demand information becomes available, and this

solution is used to decide the vehicles actions in real-time. This strategy has been

applied with success, and [145] show that the quality of the online decision depends

on the quality of the offline solutions that are used at each iteration. Together with

the rolling-horizon, [7] uses a scenario-based approach with consensus, [8] successfully

adds a waiting and relocation strategy, and [97] uses a double-horizon to take into

account long-term goals. The offline decision problems can then be translated into

45



well-defined optimization formulations, and sometimes solved to optimality. These

formulations are typically solved using column generation as in [4], which is also used

in the online setting in [36]. Custom branching algorithms, as found in [66, 49],

are used for specific routing problems. [10] formulates the decision problems using

constraint programming. For problems similar to taxi routing, with identical vehicles

and paired pick-up and delivery, variants on network flow formulations have been

proposed, for example [145] uses such a formulation to optimize truckload pickup

and delivery. Unfortunately, these exact algorithms rarely scale past a few dozens

or hundreds of customers and vehicles, depending on the application. We will use

such formulations in this chapter, though applying them on problems with tens of

thousands of customers and thousands of vehicles.

A classical way to solve these static vehicle routing problems at a larger scale is

the use of heuristics, discussed in the survey [27]. Existing solutions can be locally

improved by exploring their neighborhood: for example, 2-OPT is a famous general-

purpose heuristic that was first introduced for the traveling salesman problem (TSP)

in [41]. In practice, combinations of insertions-based greedy construction heuristics,

local-improvement and exploration heuristics are used, as in [142, 27, 97]. For sizable

problems such as taxi routing, we found that using a first-accept local-improvement

heuristic similar to the 2-OPT* algorithm presented in [116] was a good trade-off when

limited computational time is available, and we use it as a benchmark for our work.

Unfortunately, these heuristics are usually special-purposed and have to be adapted

to each particular new problem. State-of-the-art algorithm of vehicle routing include

popular meta-heuristics such as Tabu Search applied in [62], Evolutionary Algorithms,

Ant Colony Algorithms, Simulated Annealing and hybrid algorithms that combine

the advantages of different methods, as in [10]. In this chapter, we were not able to

successfully apply any of these algorithms, because of the size of our problem and the

very small time available for computations.

To the best of our knowledge, there is no large-scale benchmark for dynamic

vehicle routing, as emphasized in [113]. To test our algorithms, we chose the New

York City Taxi and Limousine Commission data-set, available at [102] and frequently

46



used in the literature. This massive data-set contains all ride-sharing and taxi trips

in NYC, starting from 2009, for a total of more than 1 billion rides. A comprehensive

description of this data-set is available in [143]. It has been used for vehicle routing

decisions in [104, 148, 122]. We used the OpenStreetMap map data [69] to reconstruct

the real city network, together with the work in [18] to infer link travel times from

the taxi data. Furthermore, we used Julia, a programming language with a focus

on numerical computing introduced in [20], in combination with the optimization

modeling library described in [91], to create a large-scale simulation and visualization

for real-world routing, and support our experiments.

2.1.2 Our Contributions

This chapter explores taxi routing, in the contemporary context of increased con-

nectivity and prevalent data: we formulate, solve, scale and apply optimization for-

mulations to real-world settings. Overall, we show that some seemingly intractable

optimization formulations in vehicle routing can be scaled to the largest problem sizes.

This is desirable, as these formulations generalize much better than special-purpose

heuristics to the various operational constraints of real-world applications.

Motivated by the centralization and modernization of taxi routing in the ride-

sharing industry, we formulate the online taxi problem as a pick-up and delivery

problem, using re-optimization and an efficient network flow mixed-integer optimiza-

tion formulation similar to [145], to leverage any prior information of ride requests to

make better decisions. In an extensive empirical study with synthetic data, we show

that in situations of high demand, optimal solutions to the offline taxi routing prob-

lem are usually significantly superior to the output of common local-improvement and

greedy routing algorithms. This confirms the edge of optimization formulations on

simple heuristics for the taxi routing problem, and outlines what practical situations

make these formulations easy or difficult to solve in practice.

To scale our formulations to real-world applications with thousands of taxis and

tens of thousands of customers, we use the specific structure of taxi-routing appli-

cations with high demand to dramatically reduce the problem size. We additionally

47



Figure 2-1: Our taxi simulation software, displaying online taxi routing in Manhattan
with 5000 taxis and 26,000 customers. The red circles represent taxis, and the green
squares represent customers being transported or waiting. The software shows the
taxi movements in real or accelerated time, and implements all the online and offline
algorithms we discuss in this chapter. It has been designed to run on a standard
laptop.

48



introduce a novel “backbone” algorithm, that first computes a restricted set of can-

didate actions that are likely to be optimal, allowing us to efficiently solve a much

sparser problem. On a very time-constrained re-optimization schedule, with only 15

seconds to solve a vehicle routing problem involving thousands of taxis, we show that

our new algorithm performs significantly better than other popular large-scale routing

heuristics.

We created an open-source simulation software (available in the TaxiSimulation

Julia package [94]) using state-of-the-art technologies, allowing us to simulate and

visualize taxi-routing in real-world setting, and presented in Figure 2-1. We use

New York City taxi ride data and the complete Manhattan routing network to apply

our algorithms in practical settings, leading us to confirm the results we got from

synthetic data. The insights we get from such applications are relevant to the current

and future taxi and ride-sharing industry, and our models have the potential to be

extended to a variety of other applications. For reproducibility, the input, output and

all the code of our experiments are shared with the published version of this chapter.

Section 2.2 introduces and defines the online taxi routing problem, and we study

in Section 2.3 its offline counterpart, formulating it using mixed integer optimization

and comparing it to established heuristics on synthetic data. In Section 2.4, we

demonstrate how to scale this formulation to the applications of interest. We finally

apply the offline algorithms to large online taxi problems in Section 2.5, using re-

optimization, and with real demand data in NYC.

2.2 The Online Taxi Routing Problem

In this section, we introduce the online taxi routing problem and the notations we

will use throughout this chapter. This model captures any prior information we may

have on customer requests, due to prior booking or customer pick-up flexibility.

49



2.2.1 Model and Data

We consider the online taxi routing problem, a special case of the online dial-a-ride

problem with time windows. In this application, vehicles are only allowed to serve one

customer at a time.

Let 𝒞 be the set of all customers. A customer 𝑐 ∈ 𝒞 is associated with a pick-up

time window (𝑡𝑚𝑖𝑛
𝑐 , 𝑡𝑚𝑎𝑥

𝑐 ), corresponding to its minimal and maximal possible pick-up

times. In the online setting, we also introduce a confirmation time 𝑡𝑐𝑜𝑛𝑓𝑐 , at which

customer 𝑐 is provided with a guarantee to be picked up (or is rejected), and a

request time 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 , at which the customer’s information becomes available. Note

that 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 ≤ 𝑡𝑐𝑜𝑛𝑓𝑐 , as the confirmation of future pick-up can only happen after the

pick-up request.

We represent each customer as a node in a directed graph 𝒢. An arc (𝑐′, 𝑐) in

𝒢 represents the possibility for a vehicle to pick-up customer 𝑐 immediately after

servicing customer 𝑐′. Each arc (𝑐′, 𝑐) is associated with a travel time 𝑇𝑐′,𝑐 such that

we must have 𝑡𝑐′ + 𝑇𝑐′,𝑐 ≤ 𝑡𝑐, where 𝑡𝑐′ and 𝑡𝑐 are the respective pick-up times of

customers 𝑐′ and 𝑐. 𝑇𝑐′,𝑐 typically represents the time for a taxi to serve customer 𝑐′

and to drive to the pick-up location of 𝑐. Each arc is also associated with a profit

𝑅𝑐′,𝑐, that represents the quantity we want to maximize. In this work, we use it to

represent the profit of the taxi company, and set 𝑅𝑐′,𝑐 to the fare paid by customer 𝑐

minus the cost of driving from the drop-off point of 𝑐′ to the pick-up point of 𝑐 and

to its destination.

We restrict ourselves to the case where 𝒢 is acyclic. In other words, the pickup

time windows can only allow one customer to be picked-up before or after another

one, but never both. There is an arc 𝑐→ 𝑐′ in 𝒢 if and only if:

𝑡𝑚𝑖𝑛
𝑐 + 𝑇𝑐,𝑐′ ≤ 𝑡𝑚𝑎𝑥

𝑐′ (2.1)

There exists a cycle of length 2 if and only if Equation (2.1) is verified from 𝑐 to 𝑐′

50



and also from 𝑐′ to 𝑐. By combining the two equations we obtain:

(𝑡𝑚𝑎𝑥
𝑐 − 𝑡𝑚𝑖𝑛

𝑐 ) + (𝑡𝑚𝑎𝑥
𝑐′ − 𝑡𝑚𝑖𝑛

𝑐′ ) ≥ 𝑇𝑐,𝑐′ + 𝑇𝑐′,𝑐 (2.2)

Negating Equation (2.2) gives us a sufficient condition for the absence of any 2-cycle:

(𝑡𝑚𝑎𝑥
𝑐 − 𝑡𝑚𝑖𝑛

𝑐 ) + (𝑡𝑚𝑎𝑥
𝑐′ − 𝑡𝑚𝑖𝑛

𝑐′ ) < 𝑇𝑐,𝑐′ + 𝑇𝑐′,𝑐 ∀𝑐, 𝑐′ ∈ 𝒞 (2.3)

In other words, the condition states that the sum of the lengths of the pick-up time

windows within the cycle should be less that the total cycle travel time, and the exact

same reasoning shows that this condition works with any cycle length. A stronger

sufficient condition to avoid any cycle is therefore that each pick-up time window is

smaller than the following ride time:

(𝑡𝑚𝑎𝑥
𝑐 − 𝑡𝑚𝑖𝑛

𝑐 ) < 𝑇𝑐,𝑐′ ∀𝑐, 𝑐′ ∈ 𝒞 (2.4)

This condition is a little too extreme, but it nonetheless holds for our taxi routing

application: the time windows we use in this chapter are of the order of 5 minutes,

and the vast majority of taxi trips considered in this chapter take more than 5 minutes

(and most of them a lot longer). The few trips that are smaller than 5 minutes are

still satisfying Equation (2.3). Taxi routing is not the only application where this

assumption holds: any dynamic vehicle routing application with time windows that

are no bigger than the typical trip length will have no or few cycles. For in-between

applications that just have a few cycles, a simple pre-processing step can remove the

cycles, or else adding sub-tour elimination constraints will be very fast and tractable.

Nonetheless, for applications with larger (or infinite) time windows and thus a large

number of cycles in 𝒢, the algorithms of this chapter would have to be adapted.

Let 𝒦 be the set of all taxis, that are supposed to be identical and whose initial

positions are represented as additional nodes in 𝒢. Each taxi 𝑘 is parametrized by a

initial time of service 𝑡𝑖𝑛𝑖𝑡𝑘 at which it becomes available. For each customer 𝑐 that

can be the first pick-up of taxi 𝑘 from its original position, we add the arc (𝑘, 𝑐) to

51



𝒢. This arc is associated with a travel time 𝑇𝑘,𝑐, typically the time for taxi 𝑘 to go to

𝑐’s pick-up location, and a profit 𝑅𝑘,𝑐, typically the fare paid by 𝑐 minus the driving

costs.

2.2.2 Decisions

A solution to the taxi routing problem is a subset of arcs of 𝒢 that designate the

sequences of customers assigned to each taxi. Each customer must only be picked-up

by at most one taxi, while respecting its pick-up time window constraint: if arc (𝑐′, 𝑐)

is in the solution (a taxi serves the two customers sequentially), then we must have

𝑡𝑐′ + 𝑇𝑐′,𝑐 ≤ 𝑡𝑐.

The goal is to maximize the total profit of the solution, as described by the

parameters 𝑅𝑐′,𝑐 and 𝑅𝑘,𝑐. Additionally, the problem is solved in an online setting,

where the information of the existence of customer 𝑐 is only revealed at time 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 :

the node appears in the graph, together with its arcs to and from other known nodes.

In this setting, the decision to add the arc (𝑐′, 𝑐) to the solution has to be made early

enough, when the taxi that is serving customer 𝑐′ can still pick-up customer 𝑐 on

time. Moreover, the decision whether to pick-up or reject customer 𝑐 must be made

before 𝑡𝑐𝑜𝑛𝑓𝑐 .

2.2.3 Interpretation

This formulation is general enough to model many optimization objectives. For ex-

ample we can minimize total empty driving time instead of profit by modifying the 𝑅

parameters accordingly. Setting 𝑅𝑐′,𝑐 = 1 ∀𝑐 ∈ 𝒞 will maximize the throughput: the

total number of customers that we can serve. Also, setting 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 = 0 ∀𝑐 ∈ 𝒞 corre-

sponds to the full-information offline problem, and 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 = 𝑡𝑚𝑖𝑛
𝑐 ∀𝑐 ∈ 𝒞 corresponds

to the fully online problem without any prior information.

Note that travel times 𝑇 are deterministic once revealed. Also, the destination of

customer 𝑐 is revealed at time 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 , as it allows us to plan the next moves as we

know the travel times to the next customers. As seen in the introduction, we focus on

52



well-connected taxi systems, that already ask customers for their destination when

requesting a ride.

A typical setting to compute the travel times 𝑇 is to consider a routing network,

where each customer will be associated with a pair of origin and destination nodes.

Assuming stationary travel times for each edge of the network and some additional

routing rules such as “taxis use the fastest path”, we can compute the times 𝑇 , possibly

including additional constant service time to pick-up and drop-off each new customer.

As we will discuss in Section 2.5, these travel time forecasts can be adjusted in a

dynamic way along with the re-optimization process.

2.3 Offline Routing: the Edge of Optimality

In this section, we introduce the offline taxi routing problem, that naturally appears

when using a re-optimization strategy for the online taxi routing. We present a

mixed integer optimization (MIO) formulation of the offline problem, along with a

set of heuristics. These different algorithms are compared on synthetic data, and we

develop an empirical intuition about the effect of a variety of practical settings on

the problem difficulty and the algorithms performances. We show that in situations

of high demand, provably optimal solutions to the routing problem outperform their

heuristic counterpart by a large margin.

2.3.1 A Re-Optimization Approach to Online Taxi Routing

When all the demand information is known beforehand, the problem is called offline

(or static). In the offline problem, there is no uncertainty about future customers.

This is equivalent to setting all the request times to the beginning of the instance, i.e.,

𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 = 0 for each customer 𝑐. In this case, the taxi routing problem introduced in

Section 2.2 becomes the Offline Taxi Routing Problem. It is a well-defined optimiza-

tion problem, and the feasible solutions maximizing profit are offline optimal. While

most real-world taxi routing problems are not offline, the profit of an offline optimal

solution is an upper bound to the profit of any strategy applied to the corresponding

53



online problem.

If an efficient solution method for the offline problem is available, it can be used

to solve the online problem through re-optimization. This online strategy repeatedly

solves the offline problem with the known customers, and implements the first taxi

actions as time goes by. Formally, given a re-optimization rate ∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (in our case

we will always use ∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = 30 seconds), iteration 𝑘 of the strategy solves the offline

problem with all unserved customers known at time 𝑡 = 𝑘∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒, i.e., the set of

customers
{︀
𝑐 ∈ 𝒞, 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 ≤ 𝑘∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒

}︀
. We then implement all the taxis actions that

take place between 𝑡 = 𝑘∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒 and 𝑡 = (𝑘 + 1)∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒 in the previously computed

offline solution. A detailed description of our implementation of the re-optimization

strategy is presented is Section 2.5.1.

The re-optimization online strategy has been shown to work well in practice, see

[9] and [145]. However, its efficiency relies on the quality of the available offline

solution methods, and their ability to give good solutions in a time that needs to be

less than ∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒. In the examples of this chapter we set a limit of 15 seconds for the

computation of an offline solution within a re-optimization iteration.

In the rest of this section, we introduce and compare different offline algorithms,

focusing on their tractability and the quality of the solutions they produce.

2.3.2 Offline Solution Methods

We formulate the offline taxi-routing problem using MIO, so that we can use a MIO

solver to compute provably optimal solutions. We also introduce a set of heuristics

that provide good feasible solutions and can serve as a benchmark.

MIO formulation. We translate the taxi problem decisions, objective and con-

straints from Section 2.2 into a linear mixed-integer optimization formulation.

Each arc of graph 𝒢 is associated with a binary decision variable (𝑥 or 𝑦), repre-

senting whether this arc is used in the solution. For each customer 𝑐, we also add the

binary variables 𝑝𝑐 to represent them being picked-up or rejected, together with the

54



continuous decision variable 𝑡𝑐 to represent their pick-up time.

𝑦𝑘,𝑐 =

⎧⎪⎨⎪⎩1, if customer 𝑐 is picked-up by taxi 𝑘 as a first customer,

0, otherwise.

𝑥𝑐′,𝑐 =

⎧⎪⎨⎪⎩1, if customer 𝑐 is picked-up immediately after customer 𝑐′ by a taxi,

0, otherwise.

𝑝𝑐 =

⎧⎪⎨⎪⎩1, if customer 𝑐 is picked-up by a taxi,

0, if 𝑐 is rejected.

𝑡𝑐 = pick-up time of customer 𝑐.

We maximize the total profit, which is the sum of the profits associated with each

arc of 𝒢 in the solution.

maximize
∑︁

𝑘∈𝒦, 𝑐∈𝒞

𝑅𝑘,𝑐𝑦𝑘,𝑐 +
∑︁
𝑐′,𝑐∈𝒞

𝑅𝑐′,𝑐𝑥𝑐′,𝑐 (2.5)

To enforce that each taxi is associated with a unique sequence of customers to

pick-up, we implement a set of network-flow constraints on the variables 𝑥, 𝑦 and 𝑝.

𝑝𝑐 =
∑︁
𝑘∈𝒦

𝑦𝑘,𝑐 +
∑︁
𝑐′∈𝒞

𝑥𝑐′,𝑐 ∀𝑐 ∈ 𝒞 (2.6)

∑︁
𝑐∈𝒞

𝑥𝑐′,𝑐 ≤ 𝑝𝑐′ ∀𝑐′ ∈ 𝒞 (2.7)

∑︁
𝑐∈𝒞

𝑦𝑘,𝑐 ≤ 1 ∀𝑘 ∈ 𝒦 (2.8)

𝑥𝑐′,𝑐 ∈ {0, 1} ∀𝑐′, 𝑐 ∈ 𝒞 (2.9)

𝑦𝑘,𝑐 ∈ {0, 1} ∀𝑘 ∈ 𝒦, 𝑐 ∈ 𝒞 (2.10)

𝑝𝑐 ∈ {0, 1} ∀𝑐 ∈ 𝒞 (2.11)

Eq. (2.6) defines 𝑝𝑐: a customer 𝑐 is picked up if and only if a (unique) taxi 𝑘 serves

55



her as a first customer (variable 𝑦𝑘,𝑐) or after another customer 𝑐′ (variable 𝑥𝑐′,𝑐).

Eq. (2.7) guarantees that each customer 𝑐′ is either picked-up and followed by at

most one other customer 𝑐 (
∑︀

𝑐∈𝒞 𝑥𝑐′,𝑐 ≤ 𝑝𝑐′ = 1) or not picked up and thus not

followed by any customers (
∑︀

𝑐∈𝒞 𝑥𝑐′,𝑐 ≤ 𝑝𝑐′ = 0). Eq. (2.8) states that each taxi

𝑘 has at most one first customer. Together these constraints can be interpreted as

“flow constraints” on the network 𝒢, and guarantee that each feasible solution is a set

of edges in 𝒢 that corresponds to a set of non-intersecting paths starting from taxis

nodes. Our assumption that there is no cycle in the graph plays an important role

here: it allows us to avoid cycle-breaking constraints that usually appear in vehicle

routing with large time windows.

We add the pick-up time window constraints:

𝑡𝑚𝑖𝑛
𝑐 ≤ 𝑡𝑐 ≤ 𝑡𝑚𝑎𝑥

𝑐 ∀𝑐 ∈ 𝒞 (2.12)

𝑡𝑐 − 𝑡𝑐′ ≥
(︀
𝑡𝑚𝑖𝑛
𝑐 − 𝑡𝑚𝑎𝑥

𝑐′

)︀
+
(︀
𝑇𝑐′,𝑐 −

(︀
𝑡𝑚𝑖𝑛
𝑐 − 𝑡𝑚𝑎𝑥

𝑐′

)︀)︀
𝑥𝑐′,𝑐 ∀𝑐, 𝑐′ ∈ 𝒞 (2.13)

𝑡𝑐 ≥ 𝑡𝑚𝑖𝑛
𝑐 +

(︀
𝑡𝑖𝑛𝑖𝑡𝑘 + 𝑇𝑘,𝑐 − 𝑡𝑚𝑖𝑛

𝑐

)︀
𝑦𝑘,𝑐 ∀𝑐 ∈ 𝒞, 𝑘 ∈ 𝒦. (2.14)

Eq. (2.12) bounds the pick-up times to the customer time windows. Eqs. (2.13) and

(2.14) are two strengthened Big M sets of constraints that make sure that the sequence

of customers assigned to each taxi is compatible with their respective pick-up times.

For example, if customer 𝑐′ is served by a taxi immediately before customer 𝑐 (i.e.,

𝑥𝑐′,𝑐 = 1), Eq. (2.13) becomes (𝑡𝑐 − 𝑡𝑐′) ≥ 𝑇𝑐′,𝑐, which is exactly the meaning of the

travel time 𝑇𝑐′,𝑐 as defined in Section 2.2. Conversely, if 𝑥𝑐′,𝑐 = 0, Eq. (2.13) becomes

(𝑡𝑐 − 𝑡𝑐′) ≥ 𝑡𝑚𝑖𝑛
𝑐 − 𝑡𝑚𝑎𝑥

𝑐′ , which is always true given the time window constraint (2.12).

The MIO formulation (2.5)-(2.14) has 𝑂(|𝒦|.|𝒞| + |𝒞|2) constraints and decision

variables. Nonetheless, not all variables 𝑥𝑐′,𝑐 and 𝑦𝑘,𝑐 need to be defined. For example,

we do not need the decision variable 𝑥𝑐′,𝑐 if 𝑡𝑚𝑖𝑛
𝑐′ + 𝑇𝑐′,𝑐 ≥ 𝑡𝑚𝑎𝑥

𝑐 , because the pick-up

time constraint (2.13) will force 𝑥𝑐′,𝑐 = 0. It is therefore sufficient to only consider

the decision variables corresponding to the actions that are compatible with the pick-

up time windows, which correspond by definition to the arcs of graph 𝒢. Let 𝑁 =

|𝒦| + |𝒞| be the number of vertices in graph 𝒢 and 𝐸 be the number of arcs. We

56



obtain 𝑂(𝐸 + 𝑁) constraints and decisions variables, which is why this formulation

is particularly efficient, owing to the fact that decision variables 𝑥𝑐′,𝑐 are not indexed

by the taxi 𝑘 that serves customers 𝑐 and 𝑐′. We can then use a MIO solver to get

an optimal integer solution to the offline taxi-routing problem. We call this optimal

algorithm MIOoptimal.

Max Flow Heuristic. In the previous MIO formulation, the constraints (2.6)-

(2.11), together with the objective (2.5) represent a max-flow problem with integer

bounds on the flow variables. Thus, extreme points of the formulation are integral,

and we can use the simplex algorithm to get an optimal integral solution. Unfortu-

nately, time window constraints (2.12)-(2.14) break this integrality property.

However, in the special case where the pick-up times are fixed, we obtain the

following integrality result:

Theorem 1. If each customer has a fixed pick-up time, i.e., the time windows are

limited to one unique pick-up time 𝑡𝑚𝑖𝑛
𝑐 = 𝑡𝑚𝑎𝑥

𝑐 = 𝑡*𝑐 , ∀𝑐 ∈ 𝒞 then the mixed-integer

formulation (2.5)-(2.14) is integral.

Proof. First, replacing 𝑡𝑚𝑖𝑛
𝑐 = 𝑡𝑚𝑎𝑥

𝑐 = 𝑡*𝑐 into Constraint (2.12), we obtain 𝑡𝑐 = 𝑡*𝑐 . By

substituting the decision variable 𝑡𝑐 with its value 𝑡*𝑐 in Constraint (2.13), we obtain

(𝑡*𝑐 − 𝑡*𝑐′) ≥ (𝑡*𝑐 − 𝑡*𝑐′) + (𝑇𝑐′,𝑐 − (𝑡*𝑐 − 𝑡*𝑐′))𝑥𝑐′,𝑐,

which is equivalent to

(𝑇𝑐′,𝑐 − (𝑡*𝑐 − 𝑡*𝑐′))𝑥𝑐′,𝑐 ≤ 0. (2.15)

If 𝑇𝑐′,𝑐−(𝑡*𝑐 − 𝑡*𝑐′) > 0, then we must have 𝑥𝑐′,𝑐 = 0 and the formulation is equivalent

to a formulation in which variable 𝑥𝑐′,𝑐 is removed.

If 𝑇𝑐′,𝑐−(𝑡*𝑐 − 𝑡*𝑐′) ≤ 0, then Equation (2.15) is always true no matter what the value

of 𝑥𝑐′,𝑐 is. As a consequence, Constraint (2.13) is inactive on the decision variables 𝑥,

𝑦 and 𝑝.

The same reasoning applies to Constraint (2.14). Therefore, the feasibility region

57



of the decision variables 𝑥, 𝑦 and 𝑝 is the same as the one defined by the network-flow

constraints (2.6)-(2.11). This formulation is integral.

When pick-up times are fixed, the integrality result means that we can solve the

offline problem efficiently, for example using the simplex algorithm. We use Theorem 1

to design a heuristic for the offline taxi-routing problems with time windows. If we

assign to each customer 𝑐 a fixed pick-up time 𝑡*𝑐 such that 𝑡𝑚𝑖𝑛
𝑐 ≤ 𝑡*𝑐 ≤ 𝑡𝑚𝑎𝑥

𝑐 , then

the optimal solution for the max-flow problem with fixed pick-up times 𝑡*𝑐 is feasible

for the general formulation with time windows. Note that these solutions are often

sub-optimal, as they do not use the time windows flexibility to pick-up customers

more efficiently. Empirically, setting 𝑡*𝑐 = 𝑡𝑚𝑎𝑥
𝑐 will yield good solutions, as taxis have

more time to go from their first position to the first customers. On the other hand,

when time windows are small, the solutions are often near-optimal or even optimal

on some problems. We call this heuristic maxflow.

Baseline Heuristic: Greedy Insertion. A simple approach to the offline taxi

routing problem is to assign the customers to taxis in a greedy way. We iterate through

the customers by order of 𝑡𝑚𝑖𝑛
𝑐 (earliest customers first), and we assign them to the

closest available taxi or reject them if no taxi is available. This heuristic is related

to insertion-based solutions construction algorithm as presented in [27]. We name

this algorithm greedy, and its formal implementation is detailed in Appendix 2.7.1.

Because of its simplicity, tractability and wide-spread use, greedy will be our baseline

for the offline taxi routing problem.

Local-Improvement with 2-OPT. Traditional solution methods for large-scale

vehicle routing include heuristics that locally improve a feasible solution in an iterative

way. The 2-OPT algorithm is a popular local-improvement heuristic, first introduced

for the TSP in [41]. We implement an optimized version of the 2-OPT* algorithm

presented in [116], in order to compare our MIO formulation to state-of-the-art fast

heuristics. We initialize it with the greedy solution, and stop it when it reaches a

locally optimal solution. We name this algorithm 2-OPT, and its details are presented

58



Figure 2-2: Routing network used to generate the synthetic instances of taxi rout-
ing. Each road is two-way, and the green connecting arcs have faster travel times.
The travel times are chosen such that the mean trip-time between two vertices in
the routing graph is around 10 minutes. The network has been designed to repre-
sent commuting effect between residential area and city-center. Customers trips are
randomly generated as Poisson processes on each intersection of the routing network.

in Appendix 2.7.2.

We chose not to use more complex meta-heuristics with exploration, such as Tabu-

Search presented in [62]. While we acknowledge these meta-heuristics avoid local

optima and are common in vehicle routing, we could not find a way to implement a

version of Tabu Search that worked with the limited time budget of a few seconds of

online decision making and the large problem size with tens of thousands of customers.

59



2.3.3 Application on Synthetic Data

We generate random synthetic instances of offline taxi routing to evaluate the al-

gorithms presented in Section 2.3.2. We compare the running time and the quality

of solutions in different scenarios, in order to gain insights that we will use to solve

large-scale real-world problems.

Routing in synthetic city. To compare the solutions of MIOoptimal to the solu-

tions provided by the other algorithms, we have designed a way to generate synthetic

routing problems. We need these synthetic problems, as real-world problems are

rarely small enough to be solved to optimality by state-of-the-art commercial solvers.

We have built synthetic instances that can be solved to optimality while being large

and complex enough to provide interesting insights.

The synthetic routing network represents a simplified city and its suburbs. The

graph has 192 nodes and 640 bi-directional arcs. The downtown area is represented

by a 8 times 8 square, and the 8 suburbs are represented by 4 times 4 squares. Travel

times are slower inside the city and suburbs, and faster in connecting links and around

the city. The routing network is represented in Figure 2-2. This network and all

the algorithms are implemented using our open-source simulation and visualization

framework in Julia.

On this network, we create a random one-hour instance of taxi-routing. We choose

the actions of a fleet of 20 taxis with uniformly distributed initial locations. Customers

are randomly generated as a Poisson process with a fixed rate, with the origin and

destination of each trip uniformly drawn across the network nodes. The fares are set

to be proportional to the distance of the trips, which are defined as the paths that

minimize the total travel time. We compute the time parameters of the taxi routing

problems 𝑇𝑐′,𝑐 using the total time of these shortest paths, to serve customer 𝑐′ and

then go to customer 𝑐 origin. The profit parameters 𝑅𝑐′,𝑐 are set equal to the profit,

i.e., the difference between the fare paid by 𝑐 and a cost proportional to the driving

time.

The travel times 𝑇𝑐′,𝑐 are selected so that the highway links (green in Figure 2-2)

60



Time Window Demand Algorithms Increase in Profit
MIOoptimal 2-OPT maxflow

1 min.
low 1.94% 1.13% 1.27%

medium 8.24% 3.70% 5.75%
high 15.92% 8.19% 12.82%

3 min.
low 1.73% 1.22% 1.10%

medium 9.00% 5.36% 2.75%
high 14.11% 7.24% 4.98%

6 min.
low 1.42% 0.96% -0.86%

medium 9.38% 5.84% -2.60%
high 19.93% 11.64% 3.17%

Table 2.1: Comparing the offline solvers to the greedy baseline. Each row corresponds
to a different setting of synthetic customer data: we vary the customers time windows
(flexibility in the pick-up time), and the level of demand (number of customers). We
show the improvement in profit of our algorithms compared to the greedy heuristic,
averaged across 20 randomly generated simulations. Low demand corresponds to
40 customers, and taxis are typically idle half of the time. Medium demand is 70
customers, which represents a balanced supply and demand. High demand is 140
customers and at least half of the customers are typically rejected. We represent in
bold the most favorable situation for each algorithm.

are twice as fast as the other links, and so that a taxi can serve up to 3-4 customers

per hour. The profit 𝑅𝑐′,𝑐 are computed such that there is a cost of $5 per hour of

driving and $1 per hour of waiting, and a customer fare of $80 per hour of driving.

Results We study the influence of the time windows and the level of demand on the

behavior of our algorithms. We select three levels of demand, setting the rates of the

customer Poisson processes so that the expectation of the total number of customers

is respectively 40, 70 and 140 customers. 40 customers (low demand) corresponds

to optimal solutions in which taxis are idle half the time and are able to serve all

customers. 70 customers (medium demand) corresponds to a matched supply and

demand: almost all customers are accepted and taxis are driving most of the time.

140 customers (high demand) represents a surge scenario, where taxis can only accept

50% of the customers on average. We give all customers a fixed time window around

their preferred pick-up time, from 1 to 6 minutes. We average our results across

20 random simulations for each set of parameters. Table 2.1 compares the profit of

61



1 2 3 4 5 6

Customer time-windows (min)

10−2

10−1

100

101

102

M
IO

 r
u
n
n
in

g
 t

im
e
, 
lo

g
 s

ca
le

 (
s)

High demand (~135 customers)

Low demand (~40 customers)

Normal demand (~70 customers)

Figure 2-3: Time for MIOoptimal to find the optimal solutions. The times are aver-
aged across 20 simulations. The three curves represent the different levels of demand,
and the x-axis is the length of the customers time windows in minutes. Generally, a
larger time windows and more customers lead to an exponentially higher computa-
tional time. Note the logarithmic scale of the y-axis.

62



the solutions of each algorithm to the greedy baseline, and Figure 2-3 shows the

computational time needed by the commercial solver Gurobi to compute the optimal

solution (MIOoptimal).

2.3.4 The Edge of Optimality

The results of the simulations on synthetic data, presented in Table 2.1 and Figure 2-

3, allow us to split the level of demand and the length of the time windows into three

main categories of vehicle routing problems. These settings represent fundamentally

different optimization problems, and we study how the solution methods compare in

each one of them.

First, when demand is low, the greedy heuristic performs almost optimally, always

within 2% of the optimum in our simulations. This situation is intuitive: most taxis

being free, assigning the nearest free taxi to a customer performs well in practice. In

this situation, optimization is not extremely useful and we recommend using greedy,

which is the fastest and the most interpretable.

When demand is medium to high, taxis are mostly busy and greedy is typically

far from optimality. There is an edge in using optimization: taking into account

future customers and using time window flexibility allows for better solutions. We

identify two main settings in this situation.

When the time windows are small, maxflow is very close to optimality. Indeed, we

have seen in Section 2.3.2 that this solution method is actually optimal when pick-up

times are fixed. As commercial linear optimization solvers are typically very fast and

scale well, we recommend using this heuristic in practice. It performs significantly

better than greedy and 2-OPT while being close to the optimal solution provided by

MIOoptimal.

The most interesting case is when demand is medium to high and time windows

are not small. This situation is the most useful in practice, as a 3-6 minutes time

window is a fair estimation of customer patience. Indeed, at the time we write this

article, the media reports a median Uber customer waiting time of 2-10 minutes,

depending on the city, though we could not find any official statistics. High demand

63



scenarios are also typical in taxi routing, with peak-hours everyday. In this case,

optimal solutions outperform the locally-optimal solutions provided by 2-OPT and

have a strong edge on greedy solutions. maxflow can perform poorly when the time

windows are large. We recommend using MIOoptimal when possible, but the problem

can be significantly harder to solve to optimality, as shown in Figure 2-3. The mixed-

integer optimization solver takes an exponential time, in the level of demand and in

the time window length, to converge to provable optimality and also to provide near-

optimal feasible solutions. When MIOoptimal is too slow to be used in practice, the

locally optimal solution provided by 2-OPT is a reasonable alternative, and is widely

used for large-scale vehicle routing, as stated in [27]. Scaling the optimal formulation

to real-world applications and outperforming the local-optimization methods is the

objective of the next section.

2.4 Scaling Optimization to Real-World Applications

Using optimal solvers for the offline taxi routing problem leads to a significant im-

provement in the solution quality, particularly when customer demand matches or

exceeds the vehicle supply. MIOoptimal nevertheless becomes quickly intractable

when the number of customers and taxis increases: to obtain a proof of optimality

in less than one hour with a typical laptop, the limit is around 150 customers for a 5

minutes time window.

In this section, we show how to leverage the structure of real-world vehicle routing

applications to make mixed-integer optimization formulations tractable. We construct

a large-scale and real-world taxi routing problem in New York City using Yellow-Cab

demand data. This problem involves thousands of taxis and customers, and each

iteration of the re-optimization process corresponds to a mixed-integer optimization

formulation with more than 10 million binary decision variables, and needs to be

solved in seconds. We propose an algorithm that is tractable at this scale of taxi

routing, outperforms the state-of-the-art and combines the advantages of local-search

and global optimization to get near-optimal results within the allowed computational

64



time.

2.4.1 Sparsifying the Flow Graph

One way to increase the tractability of MIOoptimal is to decrease the number of

binary decision variables in the mixed integer optimization formulation presented in

Section 2.3.2. Equivalently, removing some well-chosen arcs from the flow graph 𝒢

will reduce the solution space and make optimization easier. Nonetheless, we risk

removing some arcs that are in the optimal solution and hence decrease the quality

of the result. If we find arcs that are less likely to be optimal than others, removing

them can increase tractability without decreasing the optimal solution quality too

much, and, given the limited computational time, lead to better practical solutions.

Our results on synthetic data in Section 2.3.4 show that high demand scenarios are

the hardest offline taxi routing problems and are the most favorable and interesting for

optimization-based algorithms. As a result, we focus on scenarios in which demand

matches or exceeds supply. In the optimal solution for such a problem, a taxi is

unlikely to wait or drive empty for too long before getting a customer. Indeed, if we

have a large number of taxis spread throughout the city and a high demand, taxis

will probably pick-up customers that are nearby in space and time. When closer

customers are available, we do not expect a taxi to drive empty and wait a long time

to pick-up a far-away customer: we can safely remove the corresponding arcs from 𝒢.

Formally, we define a cost function between nodes in graph 𝒢. For nodes repre-

senting customers 𝑐′ and 𝑐, we define the cost 𝐶(𝑐′, 𝑐) to be the shortest possible “lost

time” that a taxi will have to spend waiting or driving empty when serving customer

𝑐′ and 𝑐 sequentially:

𝐶(𝑐′, 𝑐) = max
(︀
𝑇𝑐′,𝑐, 𝑡

𝑚𝑖𝑛
𝑐 − 𝑡𝑚𝑎𝑥

𝑐′

)︀
− 𝑇𝑐′ ,

where 𝑇𝑐′ is the time to transport customer 𝑐′ from its origin to its destination. For

nodes representing a taxi 𝑘 and a customer 𝑐, we define 𝐶(𝑘, 𝑐) to be the minimal

65



time (including wait) it takes for the taxi to reach and pick-up 𝑐 as a first customer:

𝐶(𝑘, 𝑐) = max
(︀
𝑇𝑘,𝑐, 𝑡

𝑚𝑖𝑛
𝑐 − 𝑡𝑖𝑛𝑖𝑡𝑘

)︀
.

We want to keep the arcs in 𝒢 that have the lowest cost, as they represent actions of

picking up “nearby” customers, and thus more likely to be optimal. These costs are

just used as an indicator of the quality of each edge, and will be used to remove the

edges that are really unlikely to be in an optimal solution.

For a given sparsity parameter 𝐾, we prune 𝒢 to create a sparser graph 𝐾𝒢 by

only keeping the 𝐾-lowest cost incoming and outgoing arcs for every node in 𝒢. We

name this flow graph pruning technique K-neighborhood, and its steps are detailed

in Algorithm 1.

Algorithm 1 K-neighborhood
Require:

The flow-graph 𝒢 and a sparsity parameter 𝐾.
Ensure:

A sparser flow-graph 𝐾𝒢 by pruning 𝒢.

1: Initialize graph 𝐾𝒢 with the same nodes as 𝒢 and without any arcs.
2: for all node 𝑛 in 𝒢 do
3: Select the 𝐾 incoming arcs to node 𝑛 in 𝒢 with lowest cost 𝐶(·, 𝑛) and add

them to 𝐾𝒢.
4: Select the 𝐾 outgoing arcs out of node 𝑛 in 𝒢 with lowest cost 𝐶(𝑛, ·) and

add them to 𝐾𝒢.

The new formulation associated with the graph 𝐾𝒢 (for fixed 𝐾) has 𝑂(|𝒞|+ |𝒦|)

decision variables and constraints instead of 𝑂(|𝒞|2 + |𝒞||𝒦|) for 𝒢, which allows us

to solve problems at a much larger scale. In practice,for the real-world problems

we have tried, we noticed that 𝐾 = 20 usually provides near optimal solutions, and

𝐾 = 50 optimal solutions. We have also empirically found that the choice of 𝐾

should only depend on the balance between supply and demand. When demand is

lower than supply, we have seen in Section 2.3.4 that taxis tend to be idle and the

closest taxi is likely to pick-up a customer in an optimal solution. Low values of 𝐾

are then enough to get near-optimal solutions, as the closest taxis will have generally

66



the lowest values of 𝐶(·, ·). As demand grows and matches or exceeds supply, we

have empirically found that the best solutions correspond to higher values of 𝐾, up

to 𝐾 = 50. Furthermore, the size of the city and the total number of taxis and

customers typically do not influence the choice of 𝐾: the choices for one given taxi

are typically local, in the taxi’s neighborhood, and are not influenced by the total

size of the city.

When time windows are small, results from Section 2.3.4 indicate that maxflow

provides near-optimal solutions. Additionally, using K-neighborhood with 𝐾 = 50,

problems with thousands of taxis and customers are solved in seconds using maxflow.

When time windows are larger, typically 3-6 minutes, we have shown that the offline

taxi routing problem becomes much harder, and that we need to use MIOoptimal to

get good solutions. Unfortunately, when using MIOoptimal and K-neighborhood for

our large-scale applications, the problem is typically intractable for 𝐾 ≥ 4 and low

values of 𝐾 reduce the quality of the solutions. These observations motivate the ideas

in the next section.

2.4.2 The Backbone Algorithm

In order to make MIOoptimal tractable for large instances of the taxi routing problem,

we need to remove a lot of arcs from 𝒢. We cannot set a value of 𝐾 that is too low, as

K-neighborhood would remove too many arcs that participate in optimal solutions

and correspondingly decrease the quality of the solution. Nonetheless, even within

a limited neighborhood around a taxi’s position, there are customers that are better

than others, given the positions of other taxis. If we identify these potentially good

arcs of 𝒢, we could reduce the number of arcs even more and make MIOoptimal

tractable.

In Theorem 1 we have shown that for fixed pick-up times the maxflow algorithm

solves the problem optimally. Furthermore, the maxflow algorithm scales for very

large problems. If we randomly select a pick-up time within each time window and

solve the fixed-pickup time problem with maxflow in the graph 𝐾𝒢, we get a solution

that is feasible for the problem with time windows, as seen in Section 2.3.2. If we

67



resolve several times the fixed pick-up time problem with the tractable maxflow and

random pick-up time within the time windows, and collect all the optimal arcs across

the different solutions, we obtain a set of arcs that are likely to be optimal. This set

of arcs represents a very sparse sub-graph of 𝒢, a “backbone” for our optimization

problem, on which we can use MIOoptimal to compute an optimal solution within

the backbone network, which is near-optimal for the original graph 𝒢. This is the

backbone algorithm, described formally in Algorithm 2.

Algorithm 2 backbone
Require:

The flow-graph 𝒢.
A sparsity parameter 𝐾 such that maxflow is tractable on 𝐾𝒢.
a limit 𝐸𝑚𝑎𝑥 on the number of arcs such that MIOoptimal stays tractable.

Ensure:
A backbone flow-graph 𝐵𝒢 that is a sparser version of 𝐾𝒢 with a maximum of
𝐸𝑚𝑎𝑥 arcs.

1: Step 1: initialize the backbone graph 𝐵𝒢 by removing all the arcs in 𝒢.
2: while 𝐵𝒢 has less than 𝐸𝑚𝑎𝑥 arcs do
3: for each customer 𝑐 ∈ 𝒞 do
4: Step 2: generate a uniformly random pick-up time 𝑡𝑐 ∈ [𝑡𝑚𝑖𝑛

𝑐 , 𝑡𝑚𝑎𝑥
𝑐 ].

5: Step 3: use maxflow on 𝐾𝒢 with the fixed pick-up times 𝑡𝑐.
6: Step 4: add all the optimal arcs of the computed solution to 𝐵𝒢.

We typically choose 𝐾 = 20 for the large-scale instances of this chapter: this choice

of 𝐾 creates a sparse graph while rarely sacrificing optimality. This algorithm gives

good results in practice, especially if the time windows are small (less that 2 minutes in

our applications). Steps 2-3 of Algorithm 2 can be executed in parallel, which allows

us to assign most of the available computational time to solve the mixed-integer

optimization problem on the backbone 𝐵𝒢. For wider time windows, the maxflow

solutions with random pickup times create too many arcs and therefore MIOoptimal

is not tractable at the largest scale. This motivates the need to improve the backbone

algorithm, which we do next.

68



2.4.3 The Local Backbone Algorithm

When using the re-optimization strategy presented in Section 2.3.1, we solve the

offline taxi routing problem with all the available future demand information at every

time-step of length ∆𝑡, typically 30 seconds. The offline problem at time 𝑡 is very

similar to the next problem at time 𝑡+ ∆𝑡 as we only add and remove a few requests.

Therefore, a good solution to the offline problem at time 𝑡 can be used to construct a

good solution to the problem at time 𝑡+ ∆𝑡. More specifically, we adapt the previous

solution by removing the customers that have just been served at time 𝑡 and adding

the new requests of time 𝑡+∆𝑡 as “rejected” to make the solution feasible for the new

problem (we do not know yet if we can accept them). We can then use this solution

as a warm-start for the new problem.

In Steps 2-3 of the backbone algorithm in Section 2.4.2, the fixed pick-up time is

selected uniformly randomly within the customers time windows. The idea of the local

backbone algorithm is to update the customers time windows so that the solution 𝑠

at time 𝑡 is feasible with these pick-up times.

For each customer 𝑐 served in 𝑠, we define [𝑡𝑚𝑖𝑛
𝑐,𝑠 , 𝑡𝑚𝑎𝑥

𝑐,𝑠 ] to be the interval of possible

pick-up times 𝑡𝑐 such that 𝑠 is still feasible. In other words, all taxis can still serve the

same sequence of customers as prescribed by solution 𝑠, while respecting the pick-up

time 𝑡𝑐 for customer 𝑐. We have [𝑡𝑚𝑖𝑛
𝑐,𝑠 , 𝑡𝑚𝑎𝑥

𝑐,𝑠 ] ⊂ [𝑡𝑚𝑖𝑛
𝑐 , 𝑡𝑚𝑎𝑥

𝑐 ]. We compute 𝑡𝑚𝑖𝑛
𝑐,𝑠 and 𝑡𝑚𝑎𝑥

𝑐,𝑠

next. Suppose that in solution 𝑠, a taxi has to pick-up customers 𝑐− , 𝑐 and 𝑐+, in

this order. Then

𝑡𝑚𝑖𝑛
𝑐,𝑠 = max

(︀
𝑡𝑚𝑖𝑛
𝑐 , 𝑡𝑚𝑖𝑛

𝑐−,𝑠 + 𝑇𝑐−,𝑐

)︀
, (2.16)

𝑡𝑚𝑎𝑥
𝑐,𝑠 = min

(︀
𝑡𝑚𝑎𝑥
𝑐 , 𝑡𝑚𝑎𝑥

𝑐+,𝑠 − 𝑇𝑐,𝑐+
)︀
. (2.17)

Equation (2.16) states that the minimal pick-up time 𝑡𝑚𝑖𝑛
𝑐,𝑠 for customer 𝑐 either cor-

responds to 𝑡𝑚𝑖𝑛
𝑐 , the beginning of its time window, or to the earliest possible time to

pick-up customer 𝑐− plus the travel time between 𝑐− and 𝑐 : 𝑡𝑚𝑖𝑛
𝑐−,𝑠+𝑇𝑐−,𝑐. Equivalently

Equation (2.17) defines 𝑡𝑚𝑎𝑥
𝑐,𝑠 to either be equal to 𝑡𝑚𝑎𝑥

𝑐 or to the latest possible time

to pick-up 𝑐+ minus the travel time between 𝑐 and 𝑐+, whichever is the earliest.

69



Additionally, if 𝑐𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑙𝑎𝑠𝑡 are the first and last customers to be picked-up by

taxi 𝑘, there are no propagating constraints on their earliest and latest pick-up times,

respectively, which leads to:

𝑡𝑚𝑖𝑛
𝑐𝑓𝑖𝑟𝑠𝑡,𝑠 = max

(︀
𝑡𝑚𝑖𝑛
𝑐 , 𝑡𝑖𝑛𝑖𝑡𝑘 + 𝑇𝑘,𝑐

)︀
, (2.18)

𝑡𝑚𝑎𝑥
𝑐𝑙𝑎𝑠𝑡,𝑠 = 𝑡𝑚𝑎𝑥

𝑐 . (2.19)

Using (2.16) and (2.18), 𝑡𝑚𝑖𝑛
𝑐,𝑠 can be computed for each customer 𝑐 by forward in-

duction on each taxi’s sequence of customers. Similarly, 𝑡𝑚𝑎𝑥
𝑐,𝑠 can be computed by

backward induction using Equations (2.17) and (2.19). These forward and backward

computations are similar to the Lazy and Eager Scheduling Algorithms introduced

in [10] to build solutions for the dial-a-ride problem, and are linear in the number of

pick-ups in the route.

The local-backbone algorithm. We use these new time windows as a guide for

our exploration process: instead of selecting random pick-up times within [𝑡𝑚𝑖𝑛
𝑐 , 𝑡𝑚𝑎𝑥

𝑐 ]

in the backbone algorithm, we select them within [𝑡𝑚𝑖𝑛
𝑐,𝑠 , 𝑡𝑚𝑎𝑥

𝑐,𝑠 ]. All the arcs generated

by maxflow will therefore be in a “neighborhood” of solution 𝑠, allowing us to improve

on the solution while building on the quality of 𝑠 to limit the search space. This pro-

cess can be boot-strapped to improve on itself iteratively: we name local-backbone

this variant of backbone, as described in Algorithm 3.

local-backbone is an algorithm that combines the advantages of a local-improvement

and global optimization. It aims to avoid local-minima by using an MIO solver, and

usually provides near-optimal solutions. Its main strength is when the problem is

hard to solve or when we have tight constraints on computational time: the diffi-

culty of the problem can be limited by using a very sparse graph 𝐵𝒢, and compen-

sate for the corresponding decrease in the solution quality by doing more iterations

of local-backbone to keep improving the solution as with any local-improvement

method. We empirically found that the starting solution does not significantly influ-

ence the quality of the convergence: we could not find unsatisfactory local minima

70



Algorithm 3 local-backbone
Require:

The flow-graph 𝒢.
A limit 𝐸𝑚𝑎𝑥 on the number of arcs such that MIOoptimal stays tractable.
A starting solution 𝑠, that can be empty if none is known.

Ensure:
A solution 𝑠′ for the offline taxi routing problem that improves upon solution 𝑠.

1: while time is available do
2: Compute the values [𝑡𝑚𝑖𝑛

𝑐,𝑠 , 𝑡𝑚𝑎𝑥
𝑐,𝑠 ] for each customer 𝑐 using the solution 𝑠.

3: Create an empty “backbone” graph 𝐵𝒢 by removing the arcs of 𝒢.
4: Add all the arcs of 𝑠 to 𝐵𝒢.
5: while 𝐵𝒢 has less than 𝐸𝑚𝑎𝑥 arcs do
6: for each customer 𝑐 ∈ 𝒞 do
7: Generate a uniformly random pick-up time in [𝑡𝑚𝑖𝑛

𝑐,𝑠 , 𝑡𝑚𝑎𝑥
𝑐,𝑠 ].

8: Use maxflow on 𝐾𝒢 with the fixed pick-up times 𝑡𝑐.
9: Add all the optimal arcs of the computed solution to 𝐵𝒢.

10: Use MIOoptimal to solve the offline taxi routing problem on 𝐵𝒢, with 𝑠 as a
warm-start.

11: Update 𝑠 to be this new solution 𝑠′.

in our applications. Furthermore, we adapted the algorithm to get out of any local

optimum, as described in the Remark below.

Remark 1. If we modify slightly local-backbone to also add some uniformly random

pick-up time (not local) in addition to the local ones, we obtain an algorithm that

converges to the optimum. Indeed, at each iteration of Algorithm 3, the non-local

pick-up times have a positive probability of being compatible with the optimal solu-

tion. If they are, maxflow will add the arcs of the optimal solution to 𝐵𝒢, and the

optimal solver will find the optimal solution.

For large-scale online routing problems, we found that local-backbone leads to

stronger solutions than backbone, as it is able to make the most out of a warm-

start when using re-optimization. Furthermore, we have found in our experiments

that local-backbone outperforms all the other methods we tried by a large margin.

We next present computational results and compare local-backbone to other offline

solvers.

71



Figure 2-4: A taxi-routing simulation on the Manhattan routing network in NYC.
On the left, we show a general view of the routing network, with 4324 intersections
and 9518 directed arcs, built using OpenStreetMap data. On the right, we zoom on
a detail of the online taxi routing simulation. Each red circle is a taxi, and the green
squares represent customers, either waiting or being transported by a taxi. There
were more than 26,000 customers and 4,000 taxis for 1.5 hours of simulation.

2.4.4 Taxi Routing in NYC

When studying large-scale vehicle routing problems, synthetic data is not enough to

represent complex real-world demand and networks. Therefore, we reconstructed the

exact Manhattan routing network in New York City, and used real demand data from

NYC Yellow Cabs to build accurate real-world online taxi-routing problems.

Using OpenStreetMap data, presented in [69], we extracted the complete routing

network of the island of Manhattan, as represented in Figure 2-4. This large network,

with 4324 intersections and 9518 directed arcs, was chosen because taxis and on-

demand ride-sharing vehicles are an extremely popular mean of transportation in

this city, with more than 500,000 trips everyday. Interestingly, a large fraction of the

rides stay within Manhattan from origin to destination: taxi demand data in [102]

72



shows that around 80% of the rides that have a pick-up location in Manhattan stay

within Manhattan.

The New York City Taxi and Limousine Commission has released a large taxi-

trip data-set that is freely available online, see [102]. We have access to more than

a billion trips, all the Yellow and Green Cabs trips for the years 2009-2016. The

available information includes their pick-up and drop-off points and times, the fare

and tip paid, the number of passengers and more. The volume of the demand is

large, with generally more than 400,000 trips a day for Yellow Cabs alone, more

than 12 million per month. We focus in this chapter on the yellow-cab rides of Friday

04/15/2016 12-1:30pm from Manhattan to Manhattan, which represent exactly 26,109

customers after removing data errors. This date was chosen purely arbitrarily, though

we selected a time of high demand. We adapt the trips to our routing network by

projecting the origin and destination of the customers on the nearest intersection.

The fare paid by each customer 𝑐 is used to create the profit parameters 𝑅𝑐′,𝑐, and

we set the beginning of the pick-up time window 𝑡𝑚𝑖𝑛
𝑐 to be the real pick-up time of

the customers. The values of 𝑡𝑚𝑎𝑥
𝑐 , 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 , and 𝑡𝑐𝑜𝑛𝑓𝑐 are chosen for each simulation

to represent the situations we want to model.

Simulated taxis are added to the network, and we change the number of taxis while

keeping the demand constant to control the balance between supply and demand. We

typically need a lot less taxis than the real number of Yellow Cabs to serve the same

demand, because of our optimized solutions, more centralized control and future

planning. Furthermore, we used the very same yellow-cab taxi data to estimate the

travel time on all arcs of the routing network, running the algorithm described in [18]

on the same demand data we used to create the rides. Therefore, these travel times

match the congestion and traffic patterns of the same precise day and time: Friday

04/15/2016 12-1:30pm. Under the assumption that taxis use the fastest route, which

is verified in practice for ride-sharing companies as drivers paths are suggested and

monitored in real-time by the driver’s phone application, we can compute the travel

time 𝑇𝑐′,𝑐 for each arc of the graph 𝒢. We also subtract a cost of $5 per hour of driving

so that 𝑅𝑐′,𝑐 represents the profit.

73



Algorithm Increase in profit, compared to greedy
𝐾 = 2 𝐾 = 4 𝐾 = 8 𝐾 = 20

MIOoptimal -5.05% 5.41% 3.75% 2.28%
local-backbone -5.74% 4.74% 8.27% 9.13%

2-OPT 4.03%

Table 2.2: Comparing offline algorithms on a big routing problem. These results are
averaged on five distinct simulations for an offline taxi routing problem in Manhattan
with 2700 taxis and more than 6000 customers. The computational time is limited to
5 minutes for each algorithm. To make the problem tractable for the optimization-
based methods, we apply K-neighborhood to shrink the flow graph 𝒢. We show the
results for different values of 𝐾, highlighting the most favorable case for each method.
Our version of 2-OPT does not use 𝒢 and is therefore not sensitive to 𝐾.

We created a micro-simulation software able to simulate, optimize and visualize

online vehicle routing on real-world networks. This software has provided us a much

finer control and better speed than existing software like MATsim. It also enables us

to easily interact with any free or commercial solver like CBC or Gurobi, through the

Julia for Mathematical Programming (JuMP) interface. Figure 2-4 shows an example

of such a simulation in Manhattan.

2.4.5 Offline Results for Large-Scale Taxi Routing

We have introduced new algorithms to scale the offline MIO formulation of taxi rout-

ing to real-world demand scenarios. The flow-graph shrinking heuristic K-neighborhood

implements a trade-off between the tractability of the solution methods and the

quality of the solutions. And the local-backbone algorithm is our most scalable

optimization-based algorithm. In the high-demand scenario with time windows, we

want to compare our algorithms to the baseline greedy and 2-OPT. These algorithms

are meant to be used in a re-optimization setting when solving the online problem.

We study in this section an offline taxi routing problem in NYC that represents a

typical iteration of re-optimization for the online problem.

We create an offline scenario, using the online taxi-routing problem presented in

Section 2.4.4. We assign each customer a 5 minutes time window and a random

request time that is on average 15 minutes prior to their first desired pick-up time,

74



generated randomly uniformly between 0 and 30 minutes. This 15 minutes prior

time was chosen to represent a situation with some reasonable prior information

available, and we will study in Section 2.5.3 the influence of this prior request time

on the quality of the solutions. We add 2700 taxis on the routing network, at random

locations following the distribution of customer pick-up location in Manhattan at this

time of the day. This number is chosen to represent situations with slightly exceeding

demand, for which optimization algorithms are useful. In this context, the greedy

heuristic is able to serve 80% of the demand on time.

We consider the offline taxi routing problem corresponding to one step of the

re-optimization process: at 12:30pm, with all the customers 𝑐 such that 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 ≤

12:30pm. This gives roughly 6000-6500 customers, depending on the random values

chosen for 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 . We generate five such random problems by re-generating the

request times and the taxi initial positions and average the profits generated by our

different algorithms, with a computational limit of 5 minutes for each. The actual time

available to solve this problem in practice is 15 seconds, but we give the algorithms

more time to compensate for the fact that we do not provide a warm-start and to be

able to compare the optimization power of each algorithm. In the next section, we

will show how to limit the computational time. The numerical results are presented

in Table 2.2.

The optimization based algorithms MIOoptimal and local-backbone perform

better than the nearest-taxi baseline greedy and the state-of-the-art local improve-

ment algorithm 2-OPT: our algorithms scale to real-world taxi routing. MIOoptimal

managed to find the provable optimal solution within 5 minutes only for 𝐾 = 2.

Note that this solution is worse than greedy, as 𝐾 = 2 is too small and greedy

does not operate on the pruned flow graph, and thus gives a better solution. It did

not give an optimal solution in the other cases, but generally yielded a good fea-

sible solution. For 𝐾 = 2 and 𝐾 = 4, MIOoptimal performs slightly better than

local-backbone, because of the loss due to the backbone structure. But for larger

values of 𝐾, local-backbone continues to improve and provides higher quality solu-

tions, whereas MIOoptimal becomes intractable and fails to find better solutions in

75



the allowed time.

local-backbone manages to do better than all the algorithms we tried on offline

taxi routing. More than the extra 5% of profit this algorithm generates, we have

demonstrated that mixed integer formulations can be used in practice for large-scale

vehicle routing by leveraging the “locality” of the decisions. On the other hand, we

have only solved one particular iteration of the re-optimization strategy for one partic-

ular offline routing problem. We show in the next section how our algorithm performs

in the full online setting, and what situations are more favorable for optimization.

2.5 Online Taxi Routing in NYC

In Section 2.3.1, we have introduced a re-optimization strategy to solve online taxi

routing. This iterative algorithm requires to be able to solve large-scale offline taxi

routing problems within a limit of 15 seconds, which is the limit we have chosen for

our applications. We have demonstrated in the previous section that local-backbone

can be used to get near-optimal solutions to these large offline problems in a tractable

way, though not yet respecting this strong time limit. We now show how to respect

the 15 seconds limit in practice, and compare our optimization-based algorithms to

other online strategies. These algorithms are tested on the New York City taxi routing

problem defined in Section 2.4.4 to gain insights on how the increasing connectivity,

central control and knowledge of the future demand can be used to better optimize

online routing decisions.

2.5.1 Re-optimization and Warm-Starts

Re-optimization involves re-solving the offline taxi routing problem with all the known

future customers periodically, at every time-step of length ∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = 30 seconds. This

frequent re-optimization can be leveraged to reduce the computational time needed

at each iteration. We present here our approach to re-optimization in a large-scale

real-time setting.

76



Accelerating Re-Optimization. In the re-optimization strategy, the solution of

the offline problem at one iteration can be used to provide the solver with an ini-

tial solution feasible for the next iteration. We have discussed in Section 2.4.3 that

local-backbone and 2-OPT can improve on any provided initial solutions; our rela-

tively high re-optimization frequency provides good warm-start at each step, which

leads to better results when a limited time is available.

Moreover, the previous solution is not the only thing we can build on from the

past iterations. Our local-backbone algorithm uses the flow graph 𝒦𝒢 to represent

the problem to solve. Unfortunately, it takes time to construct the graph 𝒢 at each

iteration, to prune it with K-neighborhood as presented in Section 2.4.1, and to

convert the resulting problem into a sparse matrix to give to a commercial solver.

It actually takes us 10 to 40 seconds to go through these preliminary steps for a

problem of the scale of taxi routing in Manhattan. Thankfully, the graph 𝐾𝒢 is not

too different from one iteration to the next. As new customers appear, we perform

an online update on 𝐾𝒢, adding new arcs and removing the obsolete ones. This

online update is particularly useful because we never have to construct and store the

full graph 𝒢. To make such an update possible, we keep track of the cost 𝐶(𝑐′, 𝑐)

(as introduced in Section 2.4.1) of each arc of the graph 𝐾𝒢, and we use a heap

data structure that allows us to efficiently keep and update the 𝐾-best arcs when

new requests come or old requests become obsolete. Thus, we update the pruned

flow graph 𝐾𝒢 in-place at each iteration, without reconstructing and pruning the

full graph 𝒢. This in-place update of the graph and of the corresponding sparse

matrix that we send to the solver, is what we call a formulation warm-start. In

practice, formulation warm-start allows us to create 𝐾𝒢 in one to two seconds when

the formulation of the previous iteration is available, instead of half a minute at each

iteration.

Parallelization is also useful in practice, particularly to accelerate local-backbone

and when using a solver to perform a branch-and-bound on the MIO formulation.

Indeed, the exploration phase of the backbone algorithm can be computed in parallel,

as discussed in Section 2.4.2.

77



The Online Re-Optimization Strategy The online re-optimization strategy pe-

riodically re-optimizes its assignments of future customers to taxis, sends the taxi

routing decisions to the vehicles, receives the vehicles status, and processes the cus-

tomer requests. We list all the steps of one iteration of our implementation of re-

optimization:

1. Gather the new taxi actions since the last update, and all the new customer

requests.

2. Compute the new pruned flow graph 𝐾𝒢: we update the one from the previous

iteration to the new situation. More specifically, we add the new requests and

we remove the completed picked-ups and the rejected customers. This is done

while maintaining the 𝐾-sparsity property of 𝐾𝒢. This step corresponds to the

“formulation warm-start” discussed above.

3. Update the offline solution of the previous iteration to make it feasible for the

new formulation. Specifically, mark the new customers as being rejected and

remove the decisions that have already been implemented.

4. Solve the optimization problem with local-backbone, using the formulation

and the warm-start constructed in Steps 2 and 3. A solution must be provided

in less than ∆𝑡𝑢𝑝𝑑𝑎𝑡𝑒 = 30 seconds, but we use 15 seconds to keep a security

margin and leave time to broadcast the actions to the fleet.

5. If we have reached the confirmation time 𝑡𝑐𝑜𝑛𝑓𝑐 of a customer 𝑐, look at the cus-

tomer status in the current solution. If the customer is rejected, communicate

this information to the customer, or offer her to wait for another confirmation

time. In the examples of this chapter, we will reject the customer. If the cus-

tomer is accepted, make sure that she will be accepted in all future iterations.

A simple way to do so is to add the constraint 𝑝𝑐 = 1 to the MIO formulation

presented in Section 2.3.2. This does not break the network-flow structure of the

problem and makes sure that customer 𝑐 is picked-up in all feasible solutions.

78



6. Send the taxis all the routing actions that occur before the next update. Specif-

ically, we dispatch a taxi to a customer pick-up location so that it reaches the

customer at the earliest pick-up time compatible with the new solution, which is

𝑡𝑚𝑖𝑛
𝑐,𝑠 as defined in Section 2.4.3. Taxis are not aware of the full offline schedule,

as it can change in the next re-optimization iterations.

7. Idle taxis are instructed to wait at their current position. Note that other

behaviors could be chosen instead, for example using forecast demand to route

the idle taxis, or just let them move as they want. We do not study these choices

in this chapter.

2.5.2 Online Solution Methods

To evaluate the performance of our re-optimization strategy with local-backbone,

we created a set of reference large-scale online algorithms that will serve as a baseline

to evaluate our work.

Pure online algorithm. Our simplest algorithm, pure-online, does not use the

customer prior request information, pretending that 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 = 𝑡𝑚𝑖𝑛
𝑐 ∀𝑐 ∈ 𝒞. At time

𝑡𝑚𝑖𝑛
𝑐 , this algorithm will send the nearest available taxi to the customer. The taxi

needs to be able to pick-up 𝑐 before 𝑡𝑚𝑎𝑥
𝑐 , but does not have to be idle at 𝑡𝑚𝑖𝑛

𝑐 . This

myopic algorithm is not too different from real taxi behavior, that will look for a

customer in their neighborhood, or from ride-sharing for-hire vehicles, that will be

matched with nearby requests. Therefore, pure-online will be used as a baseline to

outline the extra efficiency other algorithms gain from more optimization and prior

knowledge of the demand.

Planning with no re-optimization. no-reopt is a greedy algorithm that uses

prior request knowledge to plan ahead and find better solutions, but does not re-

optimize. We maintain a list of future assignments for each taxi. When a new

customer requests a ride for a specific pick-up time window, we check if we can

insert it in the lists of customers assigned to each taxi. If it is not possible, we

79



reject the customer. If we can, we assign it to a taxi chosen such that this new

assignment maximizes the total profit, using the efficient insertion algorithm described

in Appendix 2.7.1. Therefore, no-reopt takes into account the future positions of

the taxis when making these decisions, though the decision cannot be changed once

a customer is assigned to a taxi. This is different from the re-optimization process

described in Section 2.5.1, that can re-assign a customer to another taxi as new

information about the future is revealed, and only decides the final action when it is

time for pick-up.

Optimization-based updates. The backbone online algorithm is the re-optimization

process described in Section 2.5.1. This algorithm uses local-backbone to perform

the updates and is limited to 15 seconds of computation per iteration.

Heuristic-based updates. The 2-OPT online algorithm is the adaptation of its

offline counterpart to the online setting. We use a re-optimization process similar

to the one presented in Section 2.5.1, removing the flow-graph computations and

replacing the offline solution method local-backbone by 2-OPT. We use the warm-

start solution from the previous iteration, and we limit the algorithm to 15 seconds

of computation. This algorithm uses all available prior information, allows for re-

optimization and performs typically well in practice.

2.5.3 Experiments and Results

We apply our online algorithms to the taxi routing problem presented in Section 2.4.4.

The confirmation time 𝑡𝑐𝑜𝑛𝑓𝑐 for each customer 𝑐 is chosen to be a maximum of 3 min-

utes after the request time 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 . To study the impact of prior customer knowledge,

we vary the customer request time. Let 𝑇 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 be the desired average time of prior

request. We assign each customer c with a random request time 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 drawn uni-

formly within the interval [𝑡𝑚𝑖𝑛
𝑐 −2𝑇 𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑡𝑚𝑖𝑛

𝑐 ]. The randomness of the request times

is important: for example, if each customer 𝑐 were to request a ride at the non-random

time 𝑡𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑐 = 𝑡𝑚𝑖𝑛
𝑐 − 𝑇 𝑟𝑒𝑞𝑢𝑒𝑠𝑡, the request times would be ordered by pick-up times,

80



which is not real-world behavior. The customer time window length is the same for

each customer: we assign each customer with a time window of length 𝑇𝑤𝑎𝑖𝑡, with

𝑡𝑚𝑎𝑥
𝑐 = 𝑡𝑚𝑖𝑛

𝑐 + 𝑇𝑤𝑎𝑖𝑡. To control the supply-demand balance, we vary the number of

taxis while keeping the customers constant.

As discussed in Section 2.4.4, our algorithms are implemented in the Julia lan-

guage, with a special care for computational speed and visualizations. Their param-

eters were all optimized to get the best results. We created a framework allowing us

to test the different online strategies in the same environment, making sure that we

only share the requests information in real time. All simulations are run on identi-

cal machines, using 2 CPUs and 8GB of memory. Each simulation presented in this

section was done over a time period of 1.5 hours, as we simulated vehicle routing

in Manhattan for the real yellow cab demand of Friday 04/15/2016 12:00-1:30pm.

Figure 2-4 is an example of visualization created by our simulation software, during

an online simulation. These visualizations have proved to be extremely helpful to

understand the algorithms behavior, to compare their results and to develop a good

intuition of the problem, and ultimately to design the backbone online algorithm.

Figure 2-5 shows how prior information influences the different online algorithms,

in a high demand scenario with 5 minutes time windows. backbone performs signifi-

cantly better than 2-OPT, and the similarity of the two curves confirms the similarity

of the two re-optimization approaches. The extra percents of profit, from 1% to 3.5%

between these two methods are significant in practice, as they represent hundreds

of additional customers that have been served thanks to optimization. The sharp

increase of profit for the first few additional minutes of prior request time at the

beginning of the curve is experienced by all online methods using prior information.

It is explained by the additional time available to dispatch taxis to customers that

are further away, and that pure-online cannot pick-up because the 5 minutes time

window is too short. Nonetheless, no-reopt plateaus when more information is avail-

able, and cannot use the increasing prior request time to make better decisions. This

is typically the situation in which re-optimization is important: due to high demand,

all the no-reopt taxis are assigned to customers and we cannot accept new ones.

81



0.0 2.5 5.0 7.5 10.0 12.5 15.0

Average Prior Request Time (min)

0

5

10

15

20

25

E
x
tr

a
 p

ro
fi
t 

 (
%

)

2-OPT

backbone

no-reopt

Figure 2-5: Varying the mean prior request time. Increase in profit of each online
taxi routing algorithm compared to pure-online. We vary the mean prior request
time 𝑇 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 from 0 (pure online situation) to 15 minutes. Each customer is assigned
to a 𝑇𝑤𝑎𝑖𝑡 = 5 minutes time window. We control 4000 taxis, which corresponds to a
high demand scenario as 80% of the demand is served in the best case.

82



40 50 60 70 80 90 100

Demand served (%)

-5

0

5

10

15

20

E
x
tr

a
 p

ro
fi
t 

(%
)

2-OPT

backbone

no-reopt

Figure 2-6: Varying the supply-demand balance. Increase in profit of each online taxi
routing algorithm compared to pure-online. We vary the number of taxis from 2000
to 10000, and represent on the x-axis the corresponding fraction of customers served
by the different algorithms. The time windows have a length of 𝑇𝑤𝑎𝑖𝑡 = 5 minutes
and the mean prior request time is 𝑇 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 15 minutes.

On the other hand, re-optimization allows the option to reorganize the assignment

of customers to taxis in order to be able to pick-up more customers, more efficiently.

The surprising finding is that not a lot of prior information is needed in order to

make better decisions: asking customers to request for a ride 10 minutes beforehand

already allows for an 18% increase in profits.

Figure 2-6 shows how the balance between supply and demand influences the re-

sults of our algorithms. We have showed in Section 2.3.4 that optimization-based

algorithms and 2-OPT have a strong edge on their greedy counterpart when demand

was high. These results confirm this observation in an online setting: when the

served demand is below 95%, we do not have enough taxis to serve the high demand.

Thus 2-OPT and backbone perform significantly better than the greedy algorithms

no-reopt and pure-online, and backbone clearly outperforms 2-OPT. We have found

83



2.5 5.0 7.5 10.0

Customer time-windows (min)

0

15

30

45

65

E
x
tr

a
 p

ro
fi
t 

 (
%

)

2-OPT

backbone

no-reopt

2.5 5.0 7.5 10.0
Customer time-windows (min)

0

100000

200000

Pr
of

it 
($

)

2-OPT
backbone
nearesttaxi
no-reopt

Figure 2-7: Varying the time windows size. Increase in profit of each online taxi rout-
ing algorithm compared to pure-online (left) and in absolute profit values (right).
We vary the size 𝑇𝑤𝑎𝑖𝑡 of the customer time windows: 𝑇𝑤𝑎𝑖𝑡 = 1 minute, 𝑇𝑤𝑎𝑖𝑡 = 5
minutes and 𝑇𝑤𝑎𝑖𝑡 = 10 minutes. There are 4000 taxis, which corresponds to a high
demand scenario, and the mean prior request time is 𝑇 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 15 minutes.

that problems with more demand than available taxis (in this case with less taxis)

are generally harder to solve by offline solution methods in the re-optimization pro-

cess. Given our limited computational time, this difficulty reduces the quality of

the solutions found in the allowed time. This phenomenon is illustrated by the loss

of performance at around 70% of served demand: this problem was the hardest to

solve and there was not enough time given to the solution methods to find near-

optimal solutions. When demand is low, and the served demand is close to 100%,

taxis are generally mostly idle, and a greedy algorithm like no-reopt performs almost

as well as the optimization-based algorithm. This confirms the insight we gained in

Section 2.3.4 that problems with low demand are easy to solve and do not require

re-optimization.

Figure 2-7 shows the impact of the time window length on the quality of the dif-

ferent solution methods. We also represented the profit values on the right to give a

sense of scale. The sharp decrease in relative profit of the online algorithms in com-

parison to pure-online is actually due to an increase in quality of the pure-online

solutions, which masks the fact that all strategies give better results with larger time

windows. For 𝑇𝑤𝑎𝑖𝑡 = 1 minute, pure-online does not manage to pick-up customers

when there is no free taxi in the close vicinity, and performs really poorly. Interest-

ingly Figure 2-7 illustrates that no-reopt is no better than pure-online for very

84



large time windows, which makes sense as the two greedy heuristics are almost equiv-

alent in this setting. The prior information accessed by no-reopt is not useful when

the time windows are long enough. As a consequence, the extra 10% of profit ob-

tained by backbone for 𝑇𝑤𝑎𝑖𝑡 = 10 minutes is only due to the edge of re-optimization

over greedy algorithms, as revealed in Section 2.3.4. Even with large time windows,

re-optimization methods are significantly better than pure-online when some prior

request information is available. Moreover, even if pure-online manages to use the

large time windows to pick-up more customers, these pick-ups are generally later

than the three other algorithms, giving them a strong edge in practice for customer

satisfaction. In general, large time windows are better represented using soft time

windows constraints, penalizing the delay.

We have compared all our results to the pure-online profit, as it is representa-

tive of typical taxi system greedy strategies. This empirical study shows that using

optimization based strategies on today’s relevant large-scale vehicle transportation

systems can have a serious impact on their performance, particularly in the daily

situations of peak demand. Furthermore, our experiments suggest that these systems

should give incentives to customers to request their trips few minutes in advance.

Customers flexibility in pick-up time should also be used as much as possible, and

time windows could be personalized for each customer, with an incentive to accept a

larger one.

2.6 Conclusions

2.6.1 Extensions

Using historical data, it is possible to accurately forecast the demand in large-scale

settings and use it to route idle taxis to areas of popular demand. We did not use this

in our application, but such an extension can improve the system efficiency, especially

when there is a large cyclical demand in far-away locations like airports. Another way

to use historical and real-time data is to provide online estimate of the travel times.

85



In our applications in NYC, we have estimated the travel times from data, under

the assumption that they are stationary for the time of the experiment. In practice,

travel times can be re-estimated at each step of the re-optimization process.

We used the assumption of full control of the vehicles, as we expect that ve-

hicle control will become increasingly centralized in the future. However, the re-

optimization framework can be adapted to be more of a recommendation system,

suggesting customers to drivers, and updating the planning at each iteration given

the vehicles actual moves. More generally, this framework is also suitable to other

real-time vehicle routing applications. As our algorithm use a mixed-integer optimiza-

tion at the core, we could add extra operational constraints to represent situations as

diverse as cargo ship routing, on-demand private jets, bus renting, electric vehicles,

self-driving taxis, car-pooling and more.

2.6.2 Impact

Our contributions surpass the scope of this chapter in two ways:

First, the core ideas of our main algorithms K-neighborhood, backbone and

local-backbone are not specific to taxi routing and can be applied to other large-

scale decision problems of vehicle routing and operations research. The core idea of

a “backbone” is that some decision variables do not vary too much across almost all

near-optimal solutions, and that identifying them can significantly accelerate the opti-

mization process. This idea can be applied in a variety of situations, and is much more

general than taxi routing. For example, [124] presents a backbone algorithm for the

TSP, though formulated as a greedy heuristic. The part of a backbone algorithm that

depends on the application is how to generate “good” and varied feasible solutions in

a cheap way: we use maxflow for our taxi routing application. local-backbone goes

even one step further: if it is too expensive to construct the problem backbone, one

can do it iteratively, at each step constructing a local backbone around the current

best solution to improve on it. This general algorithm has the advantage of combining

global-optimization to avoid local extrema and local-improvement for tractability.

Additionally, the software we have built and released (see [94]) is able to simulate

86



and visualize online and offline vehicle routing problems with synthetic or real-world

routing data, using real or generated demand data. Being able to simulate real-world

vehicle routing, our framework and algorithms can solve problems that are relevant to

the industry. For example, the insights we get about the value of future information

can be of immediate practical interest for current urban transportation companies.

2.7 Appendix

We present in this appendix the details of our offline greedy and local improvement

heuristics. We use these algorithms as a baseline to evaluate the effectiveness of our

optimization-based algorithms.

2.7.1 Insertions and Greedy Heuristic

Given a solution 𝑠 to the offline taxi routing problem and a customer 𝑐 that is rejected

in this solution, an insertion of 𝑐 into 𝑠 is the process of finding a taxi that is able

to pick-up 𝑐 without modifying the rest of the solution. For example, if a taxi in 𝑠 is

supposed to serve customers 𝑐1, 𝑐2, . . . , 𝑐𝑛 in this order, inserting customer 𝑐 at position

𝑘 corresponds to modify 𝑠 so that the taxi serves customer 𝑐1, . . . , 𝑐𝑘−1, 𝑐, 𝑐𝑘, . . . , 𝑐𝑛,

under the condition that the solution is still feasible.

The most important thing when inserting a customer is to be able to check the

feasibility of the insertion, given the pick-up time window constraints. It is possible

to do this in a very efficient way: given a solution 𝑠 and a customer 𝑐, let [𝑡𝑚𝑖𝑛
𝑐,𝑠 , 𝑡𝑚𝑎𝑥

𝑐,𝑠 ]

be the interval of possible pick-up times 𝑡𝑐 such that 𝑠 is still feasible. These times are

defined in Section 2.4.3 and can be computed quickly using forward induction. We can

use them to quickly check the feasibility of inserting a customer. If we want to insert

customer 𝑐 within taxi 𝑘’s schedule, we can compute the feasible time windows using

the induction equations (2.16)-(2.19). For example, to insert customer 𝑐 between 𝑐𝑘−1

87



and 𝑐𝑘, we first compute its values 𝑡𝑚𝑖𝑛
𝑐,𝑠 and 𝑡𝑚𝑎𝑥

𝑐,𝑠 using equations (2.16) and (2.17):

𝑡𝑚𝑖𝑛
𝑐,𝑠 = max(𝑡𝑚𝑖𝑛

𝑐 , 𝑡𝑚𝑎𝑥
𝑐𝑘,𝑠
− 𝑇𝑐,𝑐𝑘) (2.20)

𝑡𝑚𝑎𝑥
𝑐,𝑠 = min(𝑡𝑚𝑎𝑥

𝑐 , 𝑡𝑚𝑖𝑛
𝑐𝑘−1,𝑠

+ 𝑇𝑐𝑘−1,𝑐) (2.21)

and the insertion is only feasible if the pick-up time window is non-empty, i.e, 𝑡𝑚𝑖𝑛
𝑐,𝑠 ≤

𝑡𝑚𝑎𝑥
𝑐,𝑠 .

For each possible insertion, we can compute the difference in profit ∆𝑅 in the new

solution after insertion. For example, when inserting 𝑐 between 𝑐𝑘−1 and 𝑐𝑘, we have:

∆𝑅 = 𝑅𝑐𝑘−1,𝑐 + 𝑅𝑐,𝑐𝑘 −𝑅𝑐𝑘−1,𝑐𝑘 (2.22)

We can now use these insertions in an iterative way to describe the greedy heuris-

tic introduced in Section 2.3.2:

1. Create an “empty” solution 𝑠, in which all customers are rejected and all taxis

idle.

2. Order all the customers by minimum pick-up time 𝑡𝑚𝑖𝑛
𝑐 , and apply the next

steps to each one, sequentially.

3. Given a customer 𝑐 to insert, try to insert it in each taxi using the feasibility

rules described in this section with the values [𝑡𝑚𝑖𝑛
𝑐,𝑠 , 𝑡𝑚𝑎𝑥

𝑐,𝑠 ] of the other customers.

4. If no inserting position is feasible, reject the customer.

5. If inserting the customer is feasible, select the taxi and the position that yield

the highest difference in profit ∆𝑅, and insert the customer.

6. Update the values [𝑡𝑚𝑖𝑛
𝑐,𝑠 , 𝑡𝑚𝑎𝑥

𝑐,𝑠 ] for all the customers that are assigned to the taxi

chosen for the insertion, using equations (2.16)-(2.19).

Inserting the customers by order of 𝑡𝑚𝑖𝑛
𝑐 performs typically really well, and is very

close to the nearest-taxi strategy, as each customer will be inserted at the end of a

taxi’s schedule, usually the taxi that is the closest to the customer.

88



2.7.2 Local-Improvement and 2-OPT

Let 𝑠 be a solution to the offline taxi routing problem, a local improvement is a

solution 𝑠′ that is in a “neighborhood” of 𝑠, such that the total profit of 𝑠′ is higher

than the profit of 𝑠. A simple yet powerful definition of such a neighborhood is the

2-OPT neighborhood. We perform a swap between two nearby taxis, exchanging

their assigned customers. For example if taxi 1 is picking up customers 𝑐11, 𝑐
1
2, 𝑐

1
3 and

taxi 2 is picking-up customers 𝑐21, 𝑐
2
2, 𝑐

2
3, swapping customer 𝑐12 and 𝑐22 (together with

the subsequent customers) could result in assigning 𝑐11, 𝑐
2
2, 𝑐

2
3 to taxi 1 and 𝑐21, 𝑐

1
2, 𝑐

1
3 to

taxi 2. Formally, we execute the following algorithm:

1. Given a solution 𝑠, choose a customer 𝑐 that is already assigned to taxi 𝑘, let

𝑐𝑘1, . . . , 𝑐
𝑘
𝑛 be the customers assigned to 𝑘 whose pick-up times are after customer

𝑐. Let also 𝑐𝑘−1 be the customer coming immediately before 𝑐 in taxi 𝑘’s schedule.

2. Select another taxi 𝑘′. Let customer 𝑐′ be the first customer of 𝑘′ such that

𝑡𝑚𝑖𝑛
𝑐′,𝑠 + 𝑇𝑐′,𝑐 ≤ 𝑡𝑚𝑎𝑥

𝑐,𝑠 . In other words, 𝑐′ is the first customer assigned to 𝑘′ such

that 𝑘′ can serve all its customer preceding 𝑐′, followed by 𝑐′, 𝑐, 𝑐𝑘1, . . . , 𝑐
𝑘
𝑛.

3. Let 𝑐𝑘′1 , . . . , 𝑐𝑘
′

𝑛 be the customers assigned to 𝑘′ whose pick-up times are after cus-

tomer 𝑐′ in solution 𝑠. Remove these customers from 𝑘′, and assign 𝑐, 𝑐𝑘1, . . . , 𝑐
𝑘
𝑛

to 𝑘′ after 𝑐′ instead.

4. Find the first customer 𝑐𝑘′𝑖 of the sequence 𝑐𝑘′1 , . . . , 𝑐𝑘
′

𝑛 such that 𝑡𝑚𝑖𝑛
𝑐𝑘−1,𝑠

+𝑇𝑐𝑘−1,𝑐
𝑘′
𝑖
≤

𝑡𝑚𝑎𝑥
𝑐𝑘

′
𝑖 ,𝑠

. In other words, find the longest sub-sequence 𝑐𝑘
′

𝑖 , . . . , 𝑐
𝑘′
𝑛 such that all

these customers can be inserted at the end of taxi 𝑘’s schedule, immediately

after customer 𝑐𝑘−1, while respecting the pick-up time windows.

5. Assign customers 𝑐𝑘
′

𝑖 , . . . , 𝑐
𝑘′
𝑛 to taxi 𝑘. And reject the customers 𝑐𝑘

′
1 , . . . , 𝑐

𝑘′
𝑖−1

that we could not insert.

6. At this point of the swap, taxi 𝑘 schedule is now . . . , 𝑐𝑘−1, 𝑐
𝑘′
𝑖 , . . . , 𝑐

𝑘′
𝑛 and taxi 𝑘′

schedule is now . . . , 𝑐′, 𝑐, 𝑐𝑘1, . . . , 𝑐
𝑘
𝑛. Customers 𝑐𝑘

′
1 , . . . , 𝑐

𝑘′
𝑖−1 are rejected.

89



7. Use the insertion algorithm described in Section 2.7.1 to try to insert all the

customers that were rejected in 𝑠 into 𝑘 and 𝑘′ schedules, the only two taxis

that we have modified.

8. Also use the insertion algorithm to try to insert the newly rejected customers

𝑐𝑘
′

1 , . . . , 𝑐
𝑘′
𝑖−1 in all taxis schedule.

9. We have built our final solution 𝑠′. Compute its profit and compare it with the

previous one.

This construction of a new solution may seem elaborate, because of its need to

respect the time windows feasibility. However, it is in practice very fast as it only

modifies a small sub-part of the solution. Steps 1. and 2. are the two most important,

as we choose the two taxis and customers on which we will perform the swap. To make

it tractable on a large-scale such as our application in Manhattan in Section 2.5.3, we

use the costs described in Section 2.4.3 to smartly choose good potential swaps. In

practice, we were able to perform 10,000 swaps per minute in the large-scale online

taxi problem in NYC introduced in Section 2.4.4.

We use these swaps to perform a local-improvement descent, only accepting a

2-OPT swap when the profit is improved, as described here:

1. Begin with a solution 𝑠 as given by greedy.

2. Perform a 2-OPT swap on 𝑠. If the profit is improved, update 𝑠 to be this new

solution.

3. If there is time left, go back to Step 2.

We call this offline algorithm 2-OPT. Note that all solutions 𝑠 in this algorithm

share the invariant that no customer rejected in 𝑠 can be inserted in 𝑠. Indeed,

greedy respect this invariant, and steps 7. and 8. make sure that we try all new

insertion possibilities at each swap. On small instances of taxi routing (less than a

few hundred customers), we have noticed that 2-OPT tends to converge very fast to a

locally optimal solution. In large cities with thousands of customers, we usually do not

90



have enough time to reach a locally optimal solution. The algorithm is slowed down

by the high dimensionality of the routing problem, though it manages to significantly

improve the solutions quality. This is a sign that more complex local-improvement

algorithms, like 3-OPT modifying 3 taxi’s schedules at a time, could not really help

with large-scale problems, as we do not even have enough time to sufficiently explore

the 2-OPT neighborhood. The same applies for more complex global-local algorithms

like Tabu-search.

91



92



Chapter 3

Travel Time Estimation in the Age of

Big Data

3.1 Introduction

In today’s increasingly dense urban landscapes, traffic congestion is an ever more

prevalent issue. As flows of goods and people increase, billions of dollars in potential

savings are at stake, making the understanding of traffic patterns a major urban

planning priority.

A main goal of traffic studies is travel time estimation, which in the broadest

sense consists of evaluating the time necessary to travel from any origin 𝑂 to any

destination 𝐷. This goal is difficult to achieve because travel times depend on a

range of effects at different timescales, from the structure of the network (number of

lanes on each road, speed limit, etc.) over the long term, to the state of congestion of

the network over the medium term, to a host of small random events (missed lights,

etc.) over the very short term. Because of the sheer number and diversity of these

sources of uncertainty, most general approaches to travel time estimation consist of

finding parameters that describe a distribution or set of distributions from which the

travel time from 𝑂 to 𝐷 is sampled.

Travel time estimation is often combined with the related goal of routing, especially

in the short to medium-term planning case. In this case, the goal is to evaluate the

93



time necessary to travel from 𝑂 to 𝐷 and find at least one path that drivers could use

to achieve this estimate, relating the travel time estimate to interpretable network

properties. In this chapter, we present a novel method to estimate typical travel times

for each road in a city network using taxi data, thus providing reasonable paths and

total trip time estimates for any origin and destination in the network.

3.1.1 The Need for a Generalized Approach to Travel Time

Estimation

The problem of inferring traffic patterns from diverse measurements is a fundamental

step behind the resolution of many complex questions in transportation and logistics.

A simple cost function on the individual arcs of the network can often form a building

block of a more complex network study, such as recent work by [114] presenting a novel

understanding of resilient networks. Furthermore, many network problems specifically

require a travel time estimate for each arc: for instance, [101], who develop a new

model for traffic assignment that takes into account network uncertainty, present an

approach starting from a prior estimate of the expected travel times of individual

arcs in the network. Even in examples such as the aforementioned work or that of

[77], both of which generally consider travel time to be a stochastic quantity, a good

estimate for the network travel times is a valuable asset in order to define a prior or

an uncertainty set for this uncertain quantity, laying the groundwork to answer more

complex questions about the network.

In a real-world setting, there are different ways to obtain traffic data in a network,

each leading to different travel time estimation methods. A popular approach uses

fixed detectors that provide information about traffic at particular points in the net-

work, most commonly loop sensors as in [38], or more advanced methods as in [87]

that exploit communication between sensors to identify the same vehicle at different

locations. Another popular approach, as in [79], uses so-called “floating-car" data,

where GPS-equipped vehicles record their location and speed at fixed time intervals,

which can range from a few seconds to a few minutes. The path followed by the

94



vehicle between “pings" of the GPS device can be inferred in a variety of ways, from

probabilistic models in [74] to tensor decomposition in [136].

A third area of study involves easily gatherable “origin-destination" (OD) data,

that only records the time and location at the beginning and at the end of a trip,

as, for example, collected by taxis or cellphone towers. Logging this data instead of

high-density floating-car data increases the privacy of the taxi driver and passenger

because the details of the followed route are not recorded. It also treats the network as

a black box, only making measurements when the user enters and exits. OD data can

be gathered for different purposes, and the methods we develop here in the context

of vehicle traffic can be extended to other types of networks, including railways,

subways, and bicycle and pedestrian networks (see recent studies such as [70]), or

combinations of such networks. Nevertheless, this generality makes the travel time

estimation harder: the problem of simultaneously determining paths and travel times

based on origin-destination data only is close to the Inverse Shortest Path Length

Problem (ISPL), an NP-hard problem which has also received some attention by [76].

In recent years, the New York City Taxi and Limousine Commission ([102]) has

maintained a complete public record of yellow cab rides within the city. The database

contains relevant metadata such as the origin, destination, fare, distance and time

traveled for over 170 million rides per year, and has been exploited for a variety of

purposes, as shown in [143]. Despite the data’s size and availability, however, it has

not been used very much for travel time estimation. [134] develop a machine learning

method based on 𝑘-nearest neighbors matching, while [122] describe a very simple

smoothing heuristic. Meanwhile, [147]’s more model-oriented approach develops a

full probabilistic path selection scheme.

3.1.2 Our Contributions

The main contribution of this chapter is a tractable methodology to solve the travel

time estimation and routing problem in a real-world setting on a large network, which

has a number of desirable properties.

First, we use very few assumptions about the data: to provide travel time esti-

95



mates, we only ask for a set of trips within a known network for which an origin, a

destination and a travel time are recorded. In particular, we do not require informa-

tion about the demand structure in the network. We design a simple static model of

traffic based on shortest path theory. This simplicity allows us to develop a multipur-

pose network optimization method that can leverage large amounts of high-variance

origin-destination data to build an estimate of city travel times that is accurate both

in and out of sample. Moreover, this method is general enough to be able to handle

other sources of data, including floating cars and loop sensors.

Furthermore, the method also recovers interpretable city traffic and routing in-

formation from this potentially noisy and incomplete data. We estimate a single

parameter for each edge, which enhances the interpretability of the results (see Fig-

ure 3-1 for an example). In order to avoid overfitting, particularly in regions of the

city where little data is available, we add a simple regularization term to the model.

The method provides insight on traffic patterns at the scale of a few city blocks, as

well as at the scale of the entire network, and also allows us to quickly find viable

paths associated with our travel time estimates.

Solving this estimation problem to optimality at an impactful scale is generally

intractable. For this reason, we develop a novel iterative algorithm that provides good

solutions, by solving a sequence of large second-order cone problems (SOCPs), which

modern solvers can tractably handle. We verify the accuracy of this algorithm in a

variety of settings and show that it provides high-quality solutions. The method is

tractable, determining the typical paths and travel times in the 4300-node Manhattan

network over a three-hour time window in under 20 minutes.

In Section 3.2, we formulate an optimization problem that gives both accurate

origin-destination travel time estimates and interpretable link travel times and routing

paths. In Section 3.3, we introduce an iterative algorithm that can compute solutions

to this optimization in large-scale settings. In Section 3.4, using synthetic data we

show that the solutions of this algorithm are near-optimal and that the simplifications

we made for tractability did not impact accuracy and interpretability. In Section 3.5,

we show that this also extends to real-world situations and we present results on

96



Figure 3-1: Close-up of Manhattan with the arc travel times estimated by our method
between 9 and 11 AM. The color of each arc represents the speed along that arc as a
percentage of the reference velocity 𝑣0 = 13.85 kph (average velocity in Manhattan on
weekdays). We can identify traffic effects at the scale of the city (Midtown congestion)
and at the scale of a single street (the ramp onto the highway on the eastern shore
of Manhattan is congested).

Manhattan taxi data.

3.2 Methodology

In this section, we define the probabilistic setting of travel time estimation, and

introduce a simple traffic model that leverages the knowledge of the routing network

to represent travel time estimates in the lower dimensional space of network arc

travel times. This allows us to create an optimization formulation that uses origin-

destination data to build an interpretable image of the network travel times, and at

the same time provide accurate travel time estimates.

3.2.1 Problem Statement: Estimating Travel Times From Data

Data. We consider a road network, represented as a directed graph 𝐺 = (𝑉,𝐸).

On this graph, we are given a data set of origin-destination travel time values in the

network, of the form (𝑜, 𝑑, 𝑇 ) with (𝑜, 𝑑) ∈ 𝑉 × 𝑉 the origin and destination nodes

97



and 𝑇 ∈ R+ the corresponding observed travel time. Data corresponding to this

general description can be obtained in many different ways. For example, the set

of observed travel times for taxi trips that started between 12pm and 1pm on 2016

Wednesdays in Manhattan would be a valid example of such a data set, as would the

set of stop-to-stop travel times for Boston school buses in the academic year 2016-17.

Some origin-destination pairs have several travel time observations in the data

set, while others have none. We can therefore define 𝑊 ⊂ 𝑉 × 𝑉 as the subset of

origin-destination pairs for which we have data: for each (𝑜, 𝑑) ∈ 𝑊 we are given

travel times {𝑇 𝑖
𝑜𝑑}

𝑛𝑜𝑑
𝑖=1, realized on 𝑛𝑜𝑑 distinct trips from 𝑜 to 𝑑.

Probabilistic Setting. We would like to estimate the times of trips that are “sim-

ilar” to the trips that are given in the data set, but may not have been observed in

the data. In other words, given any origin-destination pair (𝑜, 𝑑) ∈ 𝑉 2, we would like

to provide a point estimate 𝑇𝑜𝑑 of the time it takes to go from 𝑜 to 𝑑. To properly de-

fine these estimates for all origin-destination pairs, we describe a simple probabilistic

setting.

Each observation of the data-set is assumed to be independently sampled from

the same probability distribution. This sampling process goes as follows: the origin

and destination nodes (𝑜, 𝑑) are sampled from a discrete distribution 𝒟 in 𝑉 2. Then,

conditioned on having an origin 𝑜 and a destination 𝑑, the observed travel times

{𝑇 𝑖
𝑜𝑑}

𝑛𝑜𝑑
𝑖=1 are assumed to be sampled independently from the distribution 𝒟𝑜𝑑. Note

that 𝒟𝑜𝑑 can be different for each (𝑜, 𝑑). We assume that our data set was built

by following this sampling process, but that we do not know the distributions 𝒟 or

𝒟𝑜𝑑. We will hold these probabilistic assumptions to be true throughout this chapter,

including our experiments on synthetic data in Section 3.4. In Section 3.5, we will

show that our results extend to real-world data that does not necessarily verify our

probabilistic assumptions.

We want to obtain a point estimate 𝑇𝑜𝑑 of the distribution 𝒟𝑜𝑑 for every pair

(𝑜, 𝑑) ∈ 𝑉 × 𝑉 . Specifically, we would like to estimate the geometric mean of the

distribution 𝒟𝑜𝑑 : exp(E𝑇𝑜𝑑∼𝒟𝑜𝑑
[log(𝑇𝑜𝑑)]). We choose the geometric mean instead of

98



the standard mean because we think that the quality of travel time estimations is

perceived on a multiplicative rather than an additive scale, as we discuss in the next

paragraph.

To understand the choice of estimating the geometric mean, note that the geomet-

ric means of all the distributions 𝒟𝑜𝑑 are estimates that minimize the overall mean

squared log error (MSLE) :

MSLE((𝑇𝑜𝑑)(𝑜,𝑑)∈𝑉 2) = E(𝑜,𝑑)∼𝒟,𝑇𝑜𝑑∼𝒟𝑜𝑑

[︂(︁
log(𝑇𝑜𝑑)− log(𝑇𝑜𝑑)

)︁2]︂
(3.1)

= E(𝑜,𝑑)∼𝒟,𝑇𝑜𝑑∼𝒟𝑜𝑑

[︀
(log(𝑇𝑜𝑑)− E𝑇𝑜𝑑∼𝒟𝑜𝑑

[log(𝑇𝑜𝑑)])
2]︀ (3.2)

+ E(𝑜,𝑑)∼𝒟

[︂(︁
log(𝑇𝑜𝑑)− E𝑇𝑜𝑑∼𝒟𝑜𝑑

[log(𝑇𝑜𝑑)]
)︁2]︂

. (3.3)

Note that the expectations are taken with respect to the distributions 𝒟 and

𝒟𝑜𝑑. The MSLE decomposes into the mean log variance of the data (3.2) which is

independent of our estimates, and the mean squared log bias (MSLB) (3.3) which is a

measure of the distance of each estimate 𝑇𝑜𝑑 from the geometric mean of 𝒟𝑜𝑑. Using

the MSLE implies that an estimate that is twice an observed value is equally bad as

an estimate that is half of it. Additionally, a 30-second estimation error is a lot worse

for a trip that last 2 minutes than for a trip that lasts 15 minutes. This is what we

want and why we chose the log scale and geometric mean estimates.

Model. In practice, we do not observe all the possible (𝑜, 𝑑) pairs, which makes it

hard to estimate the geometric mean of 𝒟𝑜𝑑 using only the data that has origin 𝑜

and destination 𝑑. Nonetheless, the estimates of the distributions 𝒟𝑜𝑑 are typically

related: for example, a trip from 𝑜 to 𝑑 and a trip from 𝑜′ to 𝑑 where 𝑜 and 𝑜′ are

geographically close will have similar travel time estimates. Therefore, we leverage

the network structure by introducing parameters 𝑡𝑖𝑗 that represent the typical travel

time along any arc (𝑖, 𝑗) ∈ 𝐸, and use them to compute our estimates 𝑇𝑜𝑑.

We define a path 𝑃𝑜𝑑 from 𝑜 to 𝑑 as a series of consecutive arcs (without cy-

cles), starting at 𝑜 and ending at 𝑑, and 𝒫𝑜𝑑 to be the finite set of all possible

paths from 𝑜 to 𝑑. For each possible path 𝑃𝑜𝑑 ∈ 𝒫𝑜𝑑, we model the point es-

99



timate of the total travel time along this path to be 𝑇𝑃𝑜𝑑
=
∑︀

(𝑖,𝑗)∈𝑃𝑜𝑑
𝑡𝑖𝑗. Be-

cause our data set provides no information as to which path was followed to real-

ize a given travel time, we assume that drivers use the fastest paths available. We

thus select 𝑃𝑜𝑑 = argmin𝑃𝑜𝑑∈𝒫𝑜𝑑

∑︀
(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡𝑖𝑗, and define our point estimate to be

𝑇𝑜𝑑 = 𝑇𝑃𝑜𝑑
=
∑︀

(𝑖,𝑗)∈𝑃𝑜𝑑
𝑡𝑖𝑗. As a consequence, given the parameters 𝑡𝑖𝑗, our model

chooses the point estimates 𝑇𝑜𝑑(t) = min𝑃𝑜𝑑∈𝒫𝑜𝑑

∑︀
(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡𝑖𝑗, where t is simply short-

hand for the vector (𝑡𝑖𝑗)(𝑖,𝑗)∈𝐸 (following standard boldfaced vector notation).

To use this model, we must only provide |𝐸| parameters, which is generally much

less than the |𝑉 |2 estimates we want to obtain. The model is also interpretable,

as we expect the values 𝑡𝑖𝑗 to be representative of the typical travel times along

arc (𝑖, 𝑗) ∈ 𝐸. We acknowledge that the shortest-path assumption itself can be

questioned. From a behavioral standpoint, taxi drivers may have other objectives in

mind, such as maximizing revenue or minimizing fuel consumption; in addition, [51]

showed that shortest paths can be sensitive to changes in travel time. However, we

find that despite this modeling assumption, our results on real data are interpretable

and reasonably accurate.

Parameter Estimation. We want to use the observed travel times 𝑇 𝑖
𝑜𝑑 to estimate

the model parameters 𝑡𝑖𝑗. Following our goal to have estimates as close as possible

to the geometric mean of 𝒟𝑜𝑑, we want to find the values of 𝑡𝑖𝑗 that minimize the

MSLE of the estimates 𝑇𝑜𝑑. Because the distributions 𝒟𝑜𝑑 and 𝒟 are unknown, we

approximate them with the empirical distribution of our observations and we obtain

the following minimization problem:

min
t

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑∑︁
𝑖=1

(log 𝑇𝑜𝑑(t)− log 𝑇 𝑖
𝑜𝑑)

2, (3.4)

which is equivalent to

min
t

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑(log 𝑇𝑜𝑑(t)− log 𝑇𝑜𝑑)
2, (3.5)

100



where 𝑇𝑜𝑑 = (
∏︀𝑛𝑜𝑑

𝑖=1 𝑇
𝑖
𝑜𝑑)

1/𝑛𝑜𝑑 , the geometric mean of all the observed travel times from

𝑜 to 𝑑.

Regularization. In order to generalize well out of sample, we need to add a regu-

larization term to the empirical MSLE. This is important because we may not have

sampled enough data from 𝒟 and 𝒟𝑜𝑑, and the empirical MSLE (3.4) may not be a

good approximation of the MSLE (3.1). Leveraging our knowledge of the city net-

work, we hypothesize that two similar intersecting or consecutive roads should have

similar traffic speeds by default. Two arcs (𝑖, 𝑗) and (𝑘, 𝑙) are called neighboring

when they represent consecutive or intersecting roads with the same “type”. These

types are defined through our knowledge of the routing network, and differentiate

highways, major arteries and smaller roads. The neighboring relationship is written

as (𝑖, 𝑗) ↔ (𝑘, 𝑙). This regularization is somewhat unusual in traffic studies, but it

is effective in practice and will only influence our estimation when we do not have

enough data. Adding the regularization term to our objective yields:

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑

(︁
log 𝑇𝑜𝑑 − log 𝑇𝑜𝑑

)︁2
+ 𝜆

∑︁
(𝑖,𝑗)↔(𝑘,𝑙)

⃒⃒⃒⃒
𝑡𝑖𝑗
𝑑𝑖𝑗
− 𝑡𝑘𝑙

𝑑𝑘𝑙

⃒⃒⃒⃒
2

𝑑𝑖𝑗 + 𝑑𝑘𝑙
, (3.6)

where 𝑑𝑖𝑗 corresponds to the length in meters of the arc (𝑖, 𝑗) in the routing net-

work,
∑︀

(𝑖,𝑗)↔(𝑘,𝑙) represent the sum over all pairs of neighboring arcs (𝑖, 𝑗) and (𝑘, 𝑙)

and the parameter 𝜆 represents the strength of the regularization. In other words,

we minimize the difference in speed of neighboring roads, with the weighting factor

2/(𝑑𝑖𝑗 + 𝑑𝑘𝑙) ensuring that continuity is more important in shorter neighboring roads

(where constant velocity is a better approximation) than in longer ones.

3.2.2 MIO Formulation

We can now estimate the parameters 𝑡𝑖𝑗 from the data by solving the following mixed-

integer formulation with linear constraints and a non-linear objective:

101



min
T̂, t,z

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑

(︁
log 𝑇𝑜𝑑 − log 𝑇𝑜𝑑

)︁2
+ 𝜆

∑︁
(𝑖,𝑗)↔(𝑘,𝑙)

⃒⃒⃒⃒
𝑡𝑖𝑗
𝑑𝑖𝑗
− 𝑡𝑘𝑙

𝑑𝑘𝑙

⃒⃒⃒⃒
2

𝑑𝑖𝑗 + 𝑑𝑘𝑙
(3.7a)

s.t. 𝑇𝑜𝑑 ≤
∑︁

(𝑖,𝑗)∈𝑃 ℓ
𝑜𝑑

𝑡𝑖𝑗 ∀(𝑜, 𝑑) ∈ 𝑊, 𝑃 ℓ
𝑜𝑑 ∈ 𝒦𝑜𝑑 (3.7b)

𝑇𝑜𝑑 ≥
∑︁

(𝑖,𝑗)∈𝑃 ℓ
𝑜𝑑

𝑡𝑖𝑗 −𝑀(1− 𝑧ℓ𝑜𝑑) ∀(𝑜, 𝑑) ∈ 𝑊, 𝑃 ℓ
𝑜𝑑 ∈ 𝒦𝑜𝑑 (3.7c)

∑︁
ℓ

𝑧ℓ𝑜𝑑 = 1 ∀(𝑜, 𝑑) ∈ 𝑊 (3.7d)

𝑧ℓ𝑜𝑑 ∈ {0, 1} ∀(𝑜, 𝑑) ∈ 𝑊, ℓ ∈ {1, . . . , |𝒦𝑜𝑑|} (3.7e)

𝑡𝑖𝑗 ≥ 𝑎𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸. (3.7f)

The objective (3.7a) is the parameter estimation cost introduced in (3.6). For each

(𝑜, 𝑑) ∈ 𝑊 , the constraints enforce that 𝑇𝑜𝑑 = min𝑃𝑜𝑑∈𝒦𝑜𝑑

∑︀
(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡𝑖𝑗, i.e. 𝑇𝑜𝑑 is the

time of the shortest path from 𝑜 to 𝑑 out of all the paths in 𝒦𝑜𝑑. This non-linear

shortest path constraint is enforced using the binary variables 𝑧𝑙𝑜𝑑 that represent which

path 𝑃 ℓ
𝑜𝑑 ∈ 𝒦𝑜𝑑 is the shortest path, together with the constraints (3.7b), (3.7d) and

the big-M constraints (3.7c). Typically, 𝒦𝑜𝑑 = 𝒫𝑜𝑑 is the set of all paths from 𝑜

to 𝑑, but the formulation generalizes to any other subset 𝒦𝑜𝑑 ⊂ 𝒫𝑜𝑑. Finally, the

constraints (3.7f) introduce the bounds 𝑎𝑖𝑗 to enforce a speed limit on the arc travel

times 𝑡𝑖𝑗.

3.2.3 Iterative Path Generation

For each (𝑜, 𝑑) ∈ 𝑊 , formulation (3.7) requires one binary variable for each path going

from 𝑜 to 𝑑. The number of paths is typically exponential in the size of the graph, so

we need to reduce the number of paths to consider if we want to be able to solve (3.7).

It turns out the formulation is naturally suited for an iterative approach. Assume we

start with a small set of paths 𝒫0
𝑜𝑑 for every origin-destination pair in the data-set.

We can solve the problem in (3.7) by considering the set of paths 𝒦𝑜𝑑 = 𝒫0
𝑜𝑑 instead

of the much larger 𝒦𝑜𝑑 = 𝒫𝑜𝑑. This yields values of 𝑡𝑖𝑗, for which we can recompute

102



new shortest paths in the network using any shortest-path algorithm. If for a given

(𝑜, 𝑑), the new shortest path has length less than 𝑇𝑜𝑑, then we know that the minimum

path length computed over 𝒫0
𝑜𝑑 is not equal to the minimum path length over 𝒫𝑜𝑑.

In this case, we add the new shortest path 𝑃 1
𝑜𝑑 to our set of paths, obtaining the set

𝒫1
𝑜𝑑 = 𝒫0

𝑜𝑑 ∪ {𝑃 1
𝑜𝑑}. We can then re-solve (3.7) using 𝒫1

𝑜𝑑 instead of 𝒫0
𝑜𝑑, and iterate

this process. If instead the new shortest path for each (𝑜, 𝑑) has length equal to 𝑇𝑜𝑑,

then we know we have already found reasonable paths, reaching a stopping point for

the algorithm. The algorithm thus generates an increasing list of path candidates 𝒫𝑘
𝑜𝑑

for each iteration 𝑘 and (𝑜, 𝑑) ∈ 𝑊 , so that the shortest paths 𝑃 𝑘
𝑜𝑑 are added to the

path candidates of the next iteration, e.g. 𝒫𝑘+1
𝑜𝑑 = 𝒫𝑘

𝑜𝑑 ∪ {𝑃 𝑘
𝑜𝑑}.

This iterative approach is inspired by cutting plane algorithms in linear optimiza-

tion. In practice, most paths between 𝑜 and 𝑑 are not remotely close to being the

shortest and would never even be considered by drivers looking to travel from 𝑜 to

𝑑. Although this iterative method does not necessarily converge to the global opti-

mum of (3.7) with 𝒦𝑜𝑑 = 𝒫𝑜𝑑, we will show empirically that it yields good results for

large problems, does not exhibit pathological local optima when used with appropri-

ate regularization and typically converges in a few steps. Additionally the algorithm

is always interpretable: the solution at any iteration 𝑘 corresponds to the optimal

solution of the problem if the drivers only consider the paths in 𝒫𝑘
𝑜𝑑.

3.3 Solving Large-Scale Problems

Even with the iterative path generation presented in 3.2.3, the optimization problem

(3.7) cannot be tractably solved for most problems of interest. The main reasons are

that the objective is non-convex, and that there are at least 𝑂(|𝑊 |) binary variables,

which makes it impossible for state-of-the-art solvers to give interesting solutions in a

reasonable time for problems with more than 1000 data-points and routing networks

that represent real cities. Actually, solving this problem to optimality relates to the

problem of path reconstruction in a graph (sometimes called the Inverse Shortest Path

Length problem), an NP-hard problem, as discussed in [76]. We present a tractable

103



approach that produces good solutions, allowing us to handle hundreds of thousands

of data points in networks with tens of thousands of arcs.

3.3.1 Adapting the shortest path constraint

In order to handle a large number of data points, we need to discard the binary

variables 𝑧ℓ𝑜𝑑 introduced in (3.7e). One way to do this is to modify the constraint

𝑇𝑜𝑑 = min𝑃𝑜𝑑∈𝒦𝑜𝑑

∑︀
(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡𝑖𝑗. An interesting solution can be built by fixing the

values of the binary variable, i.e., choosing which path should be the shortest for each

(𝑜, 𝑑) ∈ 𝑊 . Indeed, if the shortest path in 𝒦𝑜𝑑 is chosen to be 𝑃 *
𝑜𝑑, then the shortest

path constraints (3.7b)-(3.7e) trivially become:

𝑇𝑜𝑑 =
∑︁

(𝑖,𝑗)∈𝑃 *
𝑜𝑑

𝑡𝑖𝑗 ∀(𝑜, 𝑑) ∈ 𝑊, (3.8a)

𝑇𝑜𝑑 ≥
∑︁

(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡𝑖𝑗 ∀(𝑜, 𝑑) ∈ 𝑊, 𝑃𝑜𝑑 ∈ 𝒦𝑜𝑑. (3.8b)

For this formulation to become useful, we need a clever way to choose 𝑃 *
𝑜𝑑 for each

(𝑜, 𝑑) ∈ 𝑊 . Our iterative path generation algorithm introduced in Section 3.2.3

provides a good candidate. At iteration 𝑘, the algorithm computes the shortest path

𝑃 𝑘
𝑜𝑑 for each (𝑜, 𝑑) ∈ 𝑊 . This path can be viewed as our “best estimate” of the true

path at iteration 𝑘, and is one of the paths we consider at iteration 𝑘 + 1. For this

reason, we choose to use this path as the chosen shortest path for the next iteration

𝑘 + 1, setting 𝑃 *
𝑜𝑑 = 𝑃 𝑘

𝑜𝑑.

In the end, the results on synthetic data in Section 3.4 and on real data in Sec-

tion 3.5 show that this method, appropriately regularized, yields interpretable high-

quality solutions and empirically converges. Our intuition is the following: this path

estimation may not seem perfect, but the tractability gains allow us to use orders of

magnitude more data, which will improve the accuracy of the 𝑡𝑖𝑗 parameters and the

𝑇𝑜𝑑 estimates, thus allowing us to compute better paths at each iteration.

104



3.3.2 Towards a Convex Objective

The left term in the minimization objective (3.7a) is nonconvex and not easily opti-

mized by traditional optimization solvers. We want to find a surrogate that is convex,

tractable, and a good approximation of the original squared log cost. More specif-

ically, we want to find a convex loss function ℓ such that ℓ(𝑇𝑜𝑑, 𝑇𝑜𝑑) = (log(𝑇𝑜𝑑) −

log(𝑇𝑜𝑑))
2 + 𝑜((𝑇𝑜𝑑 − 𝑇𝑜𝑑)

2), and such that ℓ is also unbiased in the multiplicative

space, i.e. ℓ(𝑎𝑇𝑜𝑑, 𝑇𝑜𝑑) = ℓ(𝑇𝑜𝑑

𝑎
, 𝑇𝑜𝑑) for any scalar 𝑎 > 0.

A good candidate is the maximum ratio loss: ℓ(𝑇𝑜𝑑, 𝑇𝑜𝑑) =
(︁

max
(︁

𝑇𝑜𝑑

𝑇𝑜𝑑
, 𝑇𝑜𝑑

𝑇𝑜𝑑

)︁
− 1
)︁2

.

It is a convex function of the variable 𝑇𝑜𝑑 that has all the desired properties. Our

objective thus becomes:

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑

(︃
max

(︃
𝑇𝑜𝑑

𝑇𝑜𝑑

,
𝑇𝑜𝑑

𝑇𝑜𝑑

)︃
− 1

)︃2

+ 𝜆
∑︁

(𝑖,𝑗)↔(𝑘,𝑙)

⃒⃒⃒⃒
𝑡𝑖𝑗
𝑑𝑖𝑗
− 𝑡𝑘𝑙

𝑑𝑘𝑙

⃒⃒⃒⃒
2

𝑑𝑖𝑗 + 𝑑𝑘𝑙
(3.9)

We want to be able to solve the corresponding optimization with hundreds of

thousands of data-points. To the best of our knowledge, only state-of-the-art LP and

SOCP solvers are able to handle formulations with hundreds of thousands of variables

and constraints. As a consequence, we would like to slightly modify our formulation

to be able to formulate it as an SOCP. All we need to do is replace the squared losses

by absolute values, yielding the modified objective:

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑 max

(︃
𝑇𝑜𝑑

𝑇𝑜𝑑

,
𝑇𝑜𝑑

𝑇𝑜𝑑

)︃
+ 𝜆

∑︁
(𝑖,𝑗)↔(𝑘,𝑙)

⃒⃒⃒⃒
𝑡𝑖𝑗
𝑑𝑖𝑗
− 𝑡𝑘𝑙

𝑑𝑘𝑙

⃒⃒⃒⃒
2

𝑑𝑖𝑗 + 𝑑𝑘𝑙
(3.10)

105



This new objective allows us to reformulate each iteration as an SOCP:

min
T̂, t,x

∑︁
(𝑜,𝑑)∈𝑊

𝑛𝑜𝑑𝑥𝑜𝑑 + 𝜆
∑︁

(𝑖,𝑗)↔(𝑘,𝑙)

⃒⃒⃒⃒
𝑡𝑖𝑗
𝑑𝑖𝑗
− 𝑡𝑘𝑙

𝑑𝑘𝑙

⃒⃒⃒⃒
2

𝑑𝑖𝑗 + 𝑑𝑘𝑙
(3.11a)

s.t. 𝑇𝑜𝑑 =
∑︁

(𝑖,𝑗)∈𝑃 *
𝑜𝑑

𝑡𝑖𝑗 ∀(𝑜, 𝑑) ∈ 𝑊, (3.11b)

𝑇𝑜𝑑 ≥
∑︁

(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡𝑖𝑗 ∀(𝑜, 𝑑) ∈ 𝑊, 𝑃𝑜𝑑 ∈ 𝒦𝑜𝑑,

(3.11c)

𝑥𝑜𝑑 ≥
𝑇𝑜𝑑

𝑇𝑜𝑑

∀(𝑜, 𝑑) ∈ 𝑊, (3.11d)

𝑥𝑜𝑑 ≥
𝑇𝑜𝑑

𝑇𝑜𝑑

∀(𝑜, 𝑑) ∈ 𝑊, (3.11e)

𝑡𝑖𝑗 ≥ 𝑎𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸. (3.11f)

where 𝑥𝑜𝑑 = max
(︁

𝑇𝑜𝑑

𝑇𝑜𝑑
, 𝑇𝑜𝑑

𝑇𝑜𝑑

)︁
. The objective can be formulated as linear, and all

the constraints are linear except (3.11e), which can be reformulated as the following

second-order cone constraint:

(︁
𝑥𝑜𝑑 + 𝑇𝑜𝑑

)︁
≥

⃦⃦⃦⃦
⃦⃦
⎛⎝𝑇𝑜𝑑 − 𝑥𝑜𝑑

2
√
𝑇𝑜𝑑

⎞⎠⃦⃦⃦⃦⃦⃦ . (3.12)

Replacing the squared losses by absolute values makes our new formulation more

robust to outliers and more tractable, but weakens the case for replacing the obser-

vations 𝑇 𝑖
𝑜𝑑 that share the same (𝑜, 𝑑) with their geometric mean 𝑇𝑜𝑑. Once more, we

trade some modeling rigor for the ability to use more data, and we will show that

this choice is empirically justified.

3.3.3 A Tractable Algorithm

We now summarize our tractable algorithm for large-scale static travel time estima-

tion.

1. Choose a regularization parameter 𝜆 and an initial set of arc travel times:

106



(𝑡0𝑖𝑗)(𝑖,𝑗)∈𝐸. We will show in the next sections that our results are not sensi-

tive to these choices. For each (𝑜, 𝑑) ∈ 𝐾, start with an empty set of paths

𝒫𝑜𝑑 = ∅. Then start Step 2 with iteration 𝑘 = 1.

2. For each iteration 𝑘, do the following:

3. Use an efficient, parallelized shortest-path algorithm to compute all the shortest

paths (𝑃 𝑘
𝑜𝑑)(𝑜,𝑑)∈𝑊 , using the arc travel times (𝑡𝑘−1

𝑖𝑗 )(𝑖,𝑗)∈𝐸. Add these paths to

the previous set of paths 𝒫𝑘
𝑜𝑑 = 𝒫𝑘−1

𝑜𝑑 ∪{𝑃 𝑘
𝑜𝑑}. If there is a limit Π on the number

of paths we can store (for memory or tractability reasons), remove the path of

𝒫𝑘
𝑜𝑑 with the longest travel time to make sure that |𝒫𝑘

𝑜𝑑| ≤ Π.

4. Solve the optimization problem (3.11), using the newly computed shortest paths

𝑃 *
𝑜𝑑 = 𝑃 𝑘

𝑜𝑑, to obtain the new arc travel times (𝑡𝑘𝑖𝑗)(𝑖,𝑗)∈𝐸.

5. If a convergence criterion is met, stop the algorithm and return the times

(𝑡𝑘𝑖𝑗)(𝑖,𝑗)∈𝐸. Else, start iteration 𝑘 + 1 and go to Step 2.

In the end, our algorithm returns a set of arc travel times, that can be used to compute

shortest paths and travel time estimations 𝑇𝑜𝑑 for any origin-destination pair in the

network. We propose a convergence criterion based on path differences.

Definition 1 (Path difference). Given a node pair (𝑜, 𝑑) and two paths 𝑃𝐴
𝑜𝑑 and 𝑃𝐵

𝑜𝑑,

the path difference 𝑑(𝑃𝐴
𝑜𝑑, 𝑃

𝐵
𝑜𝑑) is defined as the average of the number of arcs in 𝑃𝐴

𝑜𝑑

that are not in 𝑃𝐵
𝑜𝑑 and the number of arcs in 𝑃𝐵

𝑜𝑑 that are not in 𝑃𝐴
𝑜𝑑.

At each iteration 𝑘, we can compute the path difference between the new path

𝑃 𝑘
𝑜𝑑 and the path of the previous iteration 𝑃 𝑘−1

𝑜𝑑 for each (𝑜, 𝑑) ∈ 𝑊 . We stop

our algorithm when the mean path difference across all (𝑜, 𝑑) ∈ 𝑊 is less than a

threshold 𝛿, i.e. 1
|𝑊 |
∑︀

(𝑜,𝑑)∈𝑊 𝑑(𝑃 𝑘
𝑜𝑑, 𝑃

𝑘−1
𝑜𝑑 ) < 𝛿. In this chapter, we fix 𝛿 to a small

value: 𝛿 = 0.5. We chose this value because we noticed that our estimates 𝑇𝑜𝑑 were

not improving in subsequent iterations, for the specific applications of this chapter.

In this situation, the algorithm tends to converge in less than 10 iterations.

107



3.3.4 A General Model

The ability to solve the travel time estimation and routing problem using only origin-

destination data is useful because it makes minimal assumptions on the format of the

data. However, in some cases more data is available, for instance from loop sensors

or floating car probes (see Section 3.1.1). Due to its optimization-based framework,

our method is flexible enough to handle many additional forms of data.

The method presented in the previous section is designed under the assumption

that for every (𝑜, 𝑑) in the set of input node pairs 𝑊 ⊂ 𝑉 × 𝑉 , we are only given

a finite number of sample travel times, from which we compute a geometric mean

𝑇𝑜𝑑, with no information about the path taken by the drivers. Constraint (3.11b)

reflects the algorithm’s attempt to guess the correct path, assuming that the drivers

are trying to minimize driving times. If we assume now that for some (𝑜, 𝑑) ∈ 𝑊 , we

are given not only a travel time 𝑇 obs
𝑜𝑑 , but also the used path 𝑃 obs

𝑜𝑑 , then we can add

a term in the objective penalizing the distance between the observation 𝑇 obs
𝑜𝑑 and the

sum
∑︀

(𝑖,𝑗)∈𝑃 obs
𝑜𝑑

𝑡𝑖𝑗 of link travel times along the path 𝑃 obs
𝑜𝑑 .

Another form of traffic data that is commonly available comes from loop sen-

sors/traffic cameras, which can sometimes measure traffic velocity on a given set of

arcs 𝐿 ⊆ 𝐸. For example, [137] shows that a single loop detector on a highway is

enough to provide accurate speed estimates. A velocity measurement on arc (𝑖, 𝑗) is

easily integrated into our model, by adding a term in the objective that penalizes the

distance of 𝑡𝑖𝑗 from its measurement.

Thus, though our method is designed with minimal data in mind, it can eas-

ily incorporate additional information about the network. In a world where more

and more data is available, but formats may differ greatly from source to source, an

optimization-based approach allows for the easy integration of complementary infor-

mation, yielding a multipurpose method to solve the problem of travel time estimation

and routing.

108



3.4 Performance on Synthetic Data

When developing a tractable algorithm in Section 3.2 and 3.3, we made several simpli-

fying assumptions about driver behavior and network properties, and the complexity

of our optimization formulation led to several heuristic simplifications. It is hard

to verify if the tractable iterative algorithm presented in Section 3.3 provides good

solutions to our original problem presented in Section 3.2.2 using real-world travel

time data. Indeed, real data does not always follow our model’s assumptions. This is

why we first use synthetic data verifying our model’s assumptions to study the con-

vergence of our tractable algorithm as an approximation of the original formulation

presented in Section 3.2, and then show in Section 3.5 that our model generalizes well

to real-world data in terms of interpretability and accuracy.

Therefore, the goal of this section is twofold: first, we show that despite its heuris-

tic steps, our approach to solving the optimization problem in Section 3.3 converges

to a good estimate 𝑇𝑜𝑑 of 𝒟𝑜𝑑 in the log space, while recovering interpretable param-

eters 𝑡𝑖𝑗 that represent the local congestion states in the city. Second, we show that

even with high variance travel time distributions 𝒟𝑜𝑑 and very incomplete observa-

tions (|𝑊 | << |𝑉 |2), we are still able to generalize well and recover good estimates

𝑇𝑜𝑑 for all (𝑜, 𝑑) ∈ 𝑉 2, when the synthetic data is generated following our modeling

assumptions.

3.4.1 Synthetic Networks and Virtual Data

In order to test our method on synthetic data, we create simple model networks in

which we attempt to reconstruct traffic patterns. One model reproduces some features

of a city, with a central “downtown" area (8× 8 square grid), surrounded by suburbs

(4× 4 square grids) and circled by highways (with higher speed limits) that connect

each suburb to the central area and to the two closest neighboring suburbs. This

network is shown in Figure 3-2b. For more advanced testing, we use a larger 20× 20

square grid, with which we investigate a range of traffic patterns.

Once we have constructed the routing graphs, we create the synthetic travel time

109



(a) Simple square network, with 400
nodes and 1520 arcs. There are two arcs
between any adjacent nodes (one in each
direction). All arcs are of the same type,
and consequently they all have the same
maximum speed.

(b) Toy model of a city, with 192 nodes
and 640 arcs. The green roads are high-
ways, with much higher speed limits (and con-
sequently lower travel times proportional to
their length).

Figure 3-2: Model networks used to test our travel time estimation and routing
algorithm.

distributions 𝒟 and 𝒟𝑜𝑑. Each observation (𝑜, 𝑑, 𝑇 ) is generated as follows: first, the

distribution 𝒟 is chosen to be uniform over all origin-destination pairs in 𝑉 2. In

practice, taxi trips are not uniformly distributed over the city network; however, we

will see in the Section 3.5 that our model performs well with real-world observations

that are far from being uniformly distributed. Then, 𝒟𝑜𝑑 is chosen to be lognormal

with log-mean parameter 𝜇 = log(𝑇 real
𝑜𝑑 ) and a second parameter 𝜎 that controls the

randomness of travel times from 𝑜 to 𝑑. For context, 𝒟𝑜𝑑 has geometric mean 𝑇 real
𝑜𝑑 ,

and a value of 𝜎 = log 2 ≈ 0.7 means that a sampled time 𝑇 𝑖
𝑜𝑑 is within one geometric

standard deviation of the 𝑇 real
𝑜𝑑 if it is between 0.5𝑇 real

𝑜𝑑 and 2𝑇 real
𝑜𝑑 . The values 𝑇 real

𝑜𝑑 are

chosen to follow our shortest-path model. Therefore, we set a deterministic value of

the parameter 𝑡real
𝑖𝑗 for each arc (𝑖, 𝑗), and define 𝑇 real

𝑜𝑑 = min𝑃𝑜𝑑∈𝒫𝑜𝑑

∑︀
(𝑖,𝑗)∈𝑃𝑜𝑑

𝑡real
𝑖𝑗 . As

a consequence, 𝑇 real
𝑜𝑑 are the best estimates of the distributions 𝒟𝑜𝑑 given our shortest

path model and the estimation loss introduced in Section 3.2.1.

We then use this process to sample 𝑁 observations of origin-destination travel

110



times. For each (𝑜, 𝑑) independently, we would need several samples to be able to

estimate 𝑇 real
𝑜𝑑 (because of the randomness 𝜎), but the routing network model of our

algorithm allows us to be able to use much less samples to provide accurate point

estimates for 𝒟𝑜𝑑 (i.e. close to 𝑇 real
𝑜𝑑 ), even when (𝑜, 𝑑) ̸∈ 𝑊 .

3.4.2 Results

We evaluate the quality of our estimation using the Root Mean Squared Log Er-

ror (RMSLE) of our estimates 𝑇𝑜𝑑, defined as the square root of the MSLE (3.1).

Interestingly, the formulation simplifies when using the lognormal distributions:

RMSLE(𝑇𝑜𝑑) =

√︃
𝜎2 + E(𝑜,𝑑)∼𝒟

[︂(︁
log(𝑇𝑜𝑑)− log(𝑇 𝑟𝑒𝑎𝑙

𝑜𝑑 )
)︁2]︂

. (3.13)

To make it easier to compare our estimations across different values of 𝜎, we focus on

the square root of the MSLB (RMSLB), removing the contribution of the log variance

𝜎2 of the data ( see (3.3)).

RMSLB(𝑇𝑜𝑑) =

√︃ ∑︁
(𝑜,𝑑)∈𝑉 2

(︁
log(𝑇𝑜𝑑)− log(𝑇 𝑟𝑒𝑎𝑙

𝑜𝑑 )
)︁2
, (3.14)

where we used that 𝒟 is uniform over 𝑉 2. Note that RMSLB = 0 means that we

recover the geometric expectation of the travel times exactly.

We present the effects of our method when run on the city models described in

the previous section, with a few different travel time functions and data generated as

described above. We begin by studying the toy model of a city introduced in Figure 3-

2b. The values 𝑡𝑟𝑒𝑎𝑙𝑖𝑗 are chosen by road type, with one speed for regular streets and

another for the highways. We sample 𝑁 travel time observations as described in

Section 3.4.1, and we start with random arc travel times to define the initial path

𝑃 0
𝑜𝑑 for each (𝑜, 𝑑) in 𝑊 . In Table 3.1 we present results of our method for different

values of 𝑁 and 𝜎.

For all values of 𝜎, when setting 𝛿 = 0.5 we find that the method tends to converge

in under 10 iterations. Each iteration on this small network (192 nodes, 640 arcs) takes

111



Available amount of data
𝑁 = 100 𝑁 = 500 𝑁 = 1, 000 𝑁 = 10, 000

Randomness of input data RMSLB of estimation

𝜎 = 0.0 0.08 0.03 0.01 0.01
𝜎 = 0.1 0.09 0.06 0.03 0.02
𝜎 = 0.5 0.23 0.12 0.15 0.05
𝜎 = 1.0 0.48 0.22 0.20 0.07
𝜎 = 2.0 0.62 0.43 0.30 0.15

Table 3.1: RMSLB (Root Mean Squared Log Bias) of estimation for a varying amount
of data and randomness 𝜎. RMSLB of estimation for a varying amount of data 𝑁 and
a varying amount of travel time randomness on the toy city model (see Fig. 3-2b).
The toy city used has just under 37,000 node pairs (192 nodes), but notice that we
need very little data to create an estimate with small bias.

less than 10 seconds for a total run-time of less than two minutes. We noticed that the

regularization term in the objective greatly speeds up convergence by reducing the

relevance of tiny path differences. In addition, Table 3.1 confirms the rather obvious

fact that results are more accurate with more data and less randomness in the data

(top left corner). However, it also reveals that when the input has a high log variance

𝜎2 it is possible to obtain an estimate with comparatively small bias with very little

data. For example, when 𝜎 = 2, it is possible to obtain an estimation bias that is

smaller by more than a factor of two with only 100 observations, i.e., less than 2% of

the total origin-destination pairs.

The results in Table 3.1 should be taken with a grain of salt, however, as the toy

model in Fig. 3-2b is intentionally suited to the assumptions with which we developed

our model (especially the velocity continuity assumption of our regularization). The

goal of this experiment is simply to confirm that the method converges as intended

and produces sensible results. The next step is to consider a model that does not

follow our traffic assumptions as closely. We therefore focus on the square network

(400 nodes), which we associate with two traffic configurations, presented in Figures

3-3 and 3-4, corresponding to semi-realistic scenarios, including a gradual north-to-

south increase in travel time (Fig. 3-3a), and two congested neighborhoods where

arc travel times are doubled and quadrupled (Fig. 3-4a) as compared to the rest of

112



(a) True congestion. (b) Reconstruction.

Figure 3-3: Results of our algorithm on a square network for a congestion gradient.
Green arcs have a higher velocity and thus a lower travel time, while red arcs are
more congested and thus have a lower velocity and a higher travel time. All arcs
are of the same type, with a maximum velocity of 50 kph. The estimates 𝑇𝑜𝑑 are
computed using 𝑁 = 5, 000 observations. The Root mean squared log bias (RMSLB)
of the estimates is 0.041, which is over eight times smaller than the input log standard
deviation 𝜎 = 0.35. The algorithm effectively reconstructs high-level traffic patterns
and provides accurate travel time estimates despite extremely noisy data. For arcs
in each of the four quarters from the top, the true velocity is respectively 60%, 30%,
20%, and 15% of the maximum velocity. The gradient from Figure 3-3a is clearly
visible despite some noise.

113



(a) True congestions (b) Reconstruction

Figure 3-4: Results of our algorithm on a square network with two congested neigh-
borhoods. Green arcs have a higher velocity and thus a lower travel time, while red
arcs are more congested and thus have a lower velocity and a higher travel time. All
arcs are of the same type, with a maximum velocity of 50 kph. The true velocity is
30% of the maximum velocity for arcs in the upper-left neighborhood, 15% for arcs
in the lower-right neighborhood, and 60% for arcs outside these neighborhoods. The
estimates 𝑇𝑜𝑑 are computed using 𝑁 = 5, 000 observations. The RMSLB of the esti-
mates is 0.069, which is over eight times smaller than the input log standard deviation
𝜎 = 0.35.

114



the city. Readers will note that these scenarios break our road velocity continuity

assumption in different ways: the first because the velocities of neighboring vertical

arcs are never equal, and the second because the borders between congested and

uncongested areas are strongly discontinuous in terms of velocity.

For each of the two scenarios thus described, we sample 𝑁 = 5, 000 observations

as described in Section 3.4.1, for 𝜎 = 0.35 (we choose this value because it is ap-

proximately our estimate of the log standard deviation of Manhattan taxi travel time

data).

The arc travel times found by our algorithm are shown in Figures 3-3b and 3-4b.

The algorithm does a remarkable job reconstructing the travel times in the network

given limited data. As noted above, the data provided was noisy (𝜎 = 0.35), yet the

RMSLB for the estimated travel times 𝑇𝑜𝑑 over all (𝑜, 𝑑) in 𝑊 is 0.07 in one case and

0.04 in the other. Therefore, the algorithm not only produces accurate travel times

estimates for the origin-destination pairs for which no data was available, it does so

with minimal bias when compared to the high randomness and sparsity of the travel

time data. Notice that the regularization term in the objective, though based on

a questionable traffic assumption, does not preclude us from reconstructing the arc

travel times as desired in both cases, though it does make it difficult to find the exact

border of the congested neighborhoods in one case, and the precise velocity gradient

in the other.

All in all, the method developed in this chapter is able to extract useful information

from high-variance inputs, and produces a network cost function, in the form of arc

travel times, that is interpretable and can in turn be used for other applications in the

network. In the following section, we show that all the algorithm properties displayed

in this section, namely low estimation bias despite inputs with high randomness, and

the production of an interpretable final solution, also hold in a real-world setting at

much larger scales.

115



3.5 Performance on Real-World Data

So far, we have described, implemented and tested a methodology to solve the travel

time estimation and routing problem. We use a network formulation because we

assume the only allowed origins and destinations are nodes in the graph. However,

real origin-destination data records vehicles’ starting and ending points using GPS

coordinates, which are continuous variables.

In this section, we first provide a bridge between the continuous and discrete

problems in order to apply our method to real-world OD data, and present the results

on data from New York City taxis. We then display the results of our method for

varying amounts of available data, showing that our method provides both accurate

travel time estimations throughout the network and sensible routing information, for

an interpretable understanding of traffic in the city.

3.5.1 A Large-Scale Data Framework

A major contribution of this chapter is the ability to exploit a large data-set to solve

the travel time estimation and routing problem for the real-world network of a large

city. Providing a tractable method at this scale requires the construction of a substan-

tial framework to handle large amounts of network information and origin-destination

data, allowing us to leverage big data insights in solving a complex problem.

In order to solve the travel time estimation and routing problem in a real-world

setting, it is necessary to overcome two major challenges. The first difficulty is to

extract a network structure from a complex urban landscape, and specifically to iden-

tify a graph that is elaborate enough to capture most of the details of the city under

study, but simple enough to tractably support our network optimization methods.

For this purpose, we use open-source geographical data from the OpenStreetMap

project. Its database provides a highly-detailed map of New York City, which we

simplify by excluding walkways and service roads, and removing nodes that do not

represent the intersection of two or more roads. For the island of Manhattan, to which

we restrict our problem, we obtain a strongly connected graph with 4324 nodes and

116



9518 arcs. This network is quite large, and the tractability of our method on a map

of this size is itself a significant contribution of this chapter: readers will realize that

an algorithm seeking to estimate travel times in this network must consider over 18

million origin-destination pairs of nodes and at least that many shortest paths.

The second challenge is obtaining and cleaning real OD data. Data from the New

York City Taxi and Limousine Commission for the years 2009-2016 is freely available

from [102]. A month’s worth of data (approximately 2GB) contains information for

over 12 million taxi trips (over 400,000 a day). We perform all computations, network

and data handling using the Julia programming language. Our method’s tractabil-

ity is enhanced by the use of the cutting-edge Julia for Mathematical Programming

(JuMP) interface by [91], which enables us to take advantage of top-of-the-line linear

and second-order programming methods, as implemented by the commercial solvers

Gurobi and Mosek. Therefore, our framework can handle problem instances consid-

ering hundreds of thousands of data points in the entirety of Manhattan.

The results presented in Sections 3.5.3 and 3.5.4 use taxi data from weekdays in

May 2016, in the time windows 9-11AM (morning), 6-8PM (evening), and 3-6AM

(night). We restrict the data to a single month to reduce the taxi trip variance.

Smaller time windows also guarantee less noisy data, but at the cost of fewer data

points, and so we opt for a medium-sized window of a few hours. Our method therefore

seeks to capture network patterns that are averaged over the considered time window.

In order to eliminate extreme outliers, we ignore trips shorter than 30s and longer

than 3 hours, trips connecting points that are less than 250m or more than 200km

away, and trips which would require an average speed greater than 110 kph or less

than 2 kph to make sense. The existence of such unrealistic trips is a consequence of

the imperfection of the GPS sensors inside the taxi meters. After this filtering step,

we split the data into a training set containing about 415,000 trips and a testing set

containing about 275,000 trips. In the next section, we explain how we adapt this

taxi data to our discrete network-based framework.

117



3.5.2 Applying a Discrete Model to Real-World Data

The model described in Section 3.2 is discrete in space and static in time: it considers

fixed traffic patterns during a given time window in a network where the only possible

start and end locations are intersections. In contrast, real-world data is continuous

in time and space: a given taxi trip is associated with a start time and an end time

recorded by a clock within the taxi meter, and with start and end locations that are

recorded using often noisy GPS sensors. We therefore need to process the data a bit

further for it to work with our model.

In the database, each taxi trip is represented as a 6-tuple (𝑥𝑂, 𝑦𝑂, 𝑥𝐷, 𝑦𝐷, 𝑡start, 𝑡𝑡𝑂𝐷),

where 𝑥𝑂 and 𝑦𝑂 are the GPS coordinates of the origin, 𝑥𝐷 and 𝑦𝐷 are the GPS co-

ordinates of the destination, 𝑡start is the date and time of the beginning of the ride,

and 𝑡𝑡𝑂𝐷 is the travel time of the taxi from its origin to its destination. We use 𝑡start

to assign taxi trips to time intervals of length 𝜏 , and consider only this time window,

discarding all taxi trips that do not start inside this interval. For taxi trips that do

start within the interval, we do not differentiate between different 𝑡start values, so each

trip is reduced to the 5-tuple (𝑥𝑂, 𝑦𝑂, 𝑥𝐷, 𝑦𝐷, 𝑡𝑡𝑂𝐷).

The length 𝜏 of the time interval should be chosen based on the scope of the

application. If the goal is static planning, we can select a large value of 𝜏 (from a few

hours to a few months), which will allow us to consider a large amount of data, and

estimate fixed travel time parameters over the interval as accurately as possible. If

the goal is short-term dynamic planning, we can pick a small value of 𝜏 , say 5 minutes,

and use the small amount of data in this interval to quickly estimate the travel time

parameters, which we will only assume to be valid for the next time interval.

In the discrete formulation presented in the previous sections, the input of the

method is a set of node pairs 𝑊 , with a known (but possibly noisy) travel time 𝑇𝑜𝑑

for each (𝑜, 𝑑) in the set 𝑊 . In the continuous problem, the inputs are position vectors

(𝑥𝑂, 𝑦𝑂, 𝑥𝐷, 𝑦𝐷) and associated travel times 𝑡𝑡𝑂𝐷. We therefore need to project the

continuous origin (𝑥𝑂, 𝑦𝑂) and destination (𝑥𝐷, 𝑦𝐷) onto the network to be able to

use our discrete methods in this real-world setting.

118



There exist many methods of projecting continuous data onto a discrete network

model (see recent work by [117], [33]); all our results were obtained by projecting each

continuous origin-destination pair (𝑥𝑂, 𝑦𝑂, 𝑥𝐷, 𝑦𝐷) to the nearest node pair (𝑜, 𝑑) using

the Euclidean metric in R4. We can now apply our algorithm to real taxi data in

Manhattan.

3.5.3 Evaluating Results at the Scale of the City

Accuracy. We have explained in this chapter that real-world OD data has signif-

icant variance, originating from several main sources: the imprecision of the data-

gathering protocol, including potent “urban canyoning" effects in GPS data, as well

as the inherent variance of traffic patterns (see Section 3.2.1). The latter source is

especially important when the time window is long, as a consequence of our static

traffic modeling assumption.

As seen in Section 3.2, the mean squared log error (MSLE) decomposes into the

sum of the mean log variance of the data and the mean squared log bias of our

estimate. On empirical data, we can only evaluate the MSLE using (3.4). In order

to be able to evaluate the performance of our estimation, we need to estimate the

log variance of the travel time observations (3.2). Indeed, it is a lower bound on

the MSLE of our estimate, and a low-bias estimate must have an MSLE as close as

possible to this lower bound.

For this purpose, we simply compare each taxi trip in the data to the average

of the 𝑘 trips closest to it, and compute the empirical log variance between the two

values. This gives us an upper bound on the log variance term of the MSLE of our

estimate. Because the data-set is quite large, this bound is indicative, especially

when we choose the value of 𝑘 that minimizes it. For instance, this approach yields

an input log variance of 0.312 = 0.10 for the time window 9-11 AM. To understand

the magnitude of this variance, consider a mean time of 20 minutes. A trip within one

standard deviation of the mean could last any amount of time between 20𝑒−0.31 = 14.7

minutes and 20𝑒0.31 = 27.3 minutes.

We will measure the accuracy of our method by how close the MSLE of our

119



estimate is to the log variance (3.2) of the data. This is a proxy for minimizing the

mean squared log bias (3.3), which is what we did in Section 3.4 when we new the

distributions 𝒟𝑜𝑑. If the difference between the MSLE of our estimations and the

input log variance of the data is small, it means that our estimations are very close

to the geometric mean of the network travel times, and most of our error comes from

the inherent variability of the taxi trips.

For tractability reasons, we restrict the size of the input node pairs set 𝑊 to

100,000 (𝑜, 𝑑) pairs. With |𝑊 | = 100, 000, the total computation at the scale of

Manhattan takes less than 2 hours. We choose the regularization parameter 𝜆 = 1000,

which is the value that minimized the MSLE in cross-validation. We note that the

algorithm converges in 10 iterations without showing noticeable cycling (the out-of-

sample improves at each iteration).

It turns out that between 9 and 11 AM, the out-of-sample RMSLE of our esti-

mations is just over 0.36. This result means that our travel time estimation error is

barely worse than the inherent noise in the data, and our estimated travel times must

therefore be very close to the geometric expectation of the travel times throughout

the network.

Interpretability. In addition to its accuracy, we argue that our method provides

global insights about traffic patterns in New York. To show this, we compare our

results in Manhattan in the morning (9-11AM), in the evening (6-8PM) and at night

(3-6AM). We show the edge travel times for these time windows in Figures 3-5 and

3-6. The overall traffic patterns are easily identifiable in Figure 3-5, in particular the

effect of the morning (and to a lesser extent, evening) commute in Midtown, as well

as the congestion in the northern part of the island near the bridges connecting it to

the mainland.

The results of our algorithm provide insights at a variety of scales: in addition

to displaying citywide effects such as the daily commute, they also reveal more sub-

tle realities about traffic in New York: For example, when looking at Figures 3-6a

and 3-6b, it is clear that crosstown (east-west) travelers are much more exposed to

120



(a) Morning (9-11AM) (b) Evening (6-8PM) (c) Night (3-6AM)

Figure 3-5: Edge travel times in Manhattan estimated by our algorithm on weekdays
in May 2016 in the morning, evening and at night. The color of each edge represents
the speed along that edge as a percentage of the reference velocity 𝑣0 = 13.85 kph
(average velocity in Manhattan on weekdays). At the scale of the city, the algorithm
clearly identifies morning commute congestion in Midtown and the Financial District,
while at the scale of individual city blocks, it confirms the empirically known fact that
crosstown (east-west) traffic in Manhattan is much more congested than uptown-
downtown (north-south) traffic.

(a) 9-11AM (close-up) (b) 6-8PM (close-up) (c) 3-6AM (close-up)

Figure 3-6: Zoom on edge travel times in Manhattan estimated by our algorithm on
weekdays in May 2016 for 9-11AM and 3-6AM. Detail of Figure 3-5. The color of each
edge represents the speed along that edge as a percentage of the reference velocity
𝑣0 = 13.85 kph (average velocity in Manhattan on weekdays). The gap in congestion
between crosstown traffic and uptown-downtown traffic is also visible at this much
smaller scale.

121



Time of the day Training trips Mean trip time Out-of-sample RMSLE

09-11 AM 415,106 13m54s 0.31
06-08 PM 545,965 11m54s 0.30
03-06 AM 75,339 07m38s 0.28

Table 3.2: Effect of the time of the day on the taxi-trip data-set and the estimation
power of our method. Note that the number of trips available and the root mean
squared log error (RMSLE) depends on the time of the day. As a consequence, the
time-window choice plays an important role in the quality of our estimation. Figures
3-5 and 3-6 represents the corresponding network travel times.

congestion than uptown-downtown (north-south) travelers, and that the highways on

Manhattan’s eastern and western shores (FDR Drive and Riverside Drive) are much

faster routes than Manhattan’s inner streets.

More detailed error results regarding the morning, evening and night time windows

are available in Table 3.2.

A Robust and Sensible Path Estimation. At each iteration of the algorithm,

the total path difference decreases, which means the algorithm finds a stable solution

to the travel time estimation and routing problem. Moreover, we also note that the

algorithm always converges to a similar choice of path, independently of the choice

of initial paths and arc travel times. To support this claim, we show in Figures 3-7

and 3-8 the evolution of a path between a given origin and destination over random

restarts of the algorithm. Specifically, we initiate the algorithm with random times:

each edge has a velocity drawn randomly between 1 and 130 kph. This results in

the random initial paths shown in panes 3-7a, 3-7b, and 3-7c. After 5 iterations, we

consider the paths obtained by our method, in panes 3-8a, 3-8b, and 3-8c.

We see that in all three cases, the algorithm made the justifiable decision of using

the freeway on the western edge of Manhattan. In addition, despite stark differences

in the starting point, the final paths found by the method are eerily similar. One can

quibble about the exact level of similarity between these final paths, but it is wise

to remember that our method does not seek to obtain the “optimal" path between

an origin 𝑜 and a destination 𝑑 (and indeed [51] questions the existence of such an

122



(a) Random initial path 1. (b) Random initial path 2. (c) Random initial path 3.

Figure 3-7: Evolution of paths studied by our algorithm : original paths. Three
random starting point paths are presented. See Figure 3-8 for the results of the
algorithm.

optimal path in a noisy environment), but simply a reasonable path that achieves the

estimated travel time. Figure 3-8 is an example of our method accomplishing this

stated purpose.

To provide intuition for why our routes seem sensible, note that we have empiri-

cally established that the travel time estimation accuracy in Manhattan has low bias,

as we showed that the MSLE was close to our estimate of the mean log variance of

the data. Additionally, the regularization allows us to generalize well to parts of the

city with few observations. Furthermore, the obtained arc travel time parameters

𝑡𝑖𝑗 are good estimations on synthetic data and seem reasonable in NYC. All these

observations lead us to hypothesize that the obtained paths are sensible.

This result means that in a network with almost ten thousand nodes, with only

a few OD pairs relative to the possible 18 million pairs, using high variance data, we

are able to reconstruct the all-pairs shortest paths that minimize the error between

the shortest path lengths and the input data. Our optimization-based algorithm thus

exhibits a certain number of important properties: it is tractable at the scale of a

large and complex city, produces accurate travel time estimations and sensible routing

123



(a) Path 1 after 5 iterations. (b) Path 2 after 5 iterations. (c) Path 3 after 5 iterations.

Figure 3-8: Evolution of paths studied by our algorithm : path convergence. Shows
the resulting path to which the algorithm converges after 5 iterations, starting from
the initial paths and times presented in Figure 3-7. The reader will notice that despite
strong differences in the starting paths, the algorithm eventually converges to a very
reasonable solution, a path that makes use of the freeway on the western shore of
Manhattan.

information despite high variance data, and produces an overall traffic map of the city

that can be used for numerous other applications. These results are obtained with a

large number of data points, and in fact we operate at the limit of what our solvers

can handle. In the following section, we explore the effect of reducing available data

on our method’s accuracy.

3.5.4 Impact of Data Density and Comparison with Data-

Driven Methods

The results presented in Section 3.5.3 show that, when run with a large number of

data points, our method tractably estimates travel times in Manhattan. Given this

performance with a wealth of data, it is natural to wonder how our algorithm fares

when the data is much more sparse. Good performance in data-poor environments

is important for two reasons: first, few cities have as much demand for taxis as New

York, so extending the method to other networks would necessitate good behavior

124



with only minimal amounts of data. Second, taxis do not necessarily explore net-

works in a uniform manner: even in cities such as New York where they represent a

significant fraction of traffic, taxis only seldom visit certain neighborhoods, creating

data-rich and data-poor settings within a single network.

Nearest Neighbor Travel Time Estimation. In this section, we choose to com-

pare the performance of our method to simple purely data-driven schemes, which are

expected to work very well in a data-rich setting and comparatively less well in a

data-poor setting. Indeed, the formulation of the real-world travel time estimation

problem as the estimation of 𝑡𝑡𝑂𝐷 as a function of the four variables 𝑥𝑂, 𝑦𝑂, 𝑥𝐷, and

𝑦𝐷 suggests simple solution approaches based solely on the data. With no knowledge

of the network or the underlying behavior of taxi drivers, it is possible to use machine

learning to infer travel times.

For instance, a simple 𝑘-nearest neighbors scheme would match an input origin

and destination (𝑥𝑂, 𝑦𝑂, 𝑥𝐷, 𝑦𝐷) ∈ R4 to the 𝑘 taxi trips in the database closest to it

(for some choice of metric) and compute the geometric average of their travel times to

produce an estimate for the travel time between the provided origin and destination.

This scheme has the advantage of being extremely simple and allowing for quick

travel time estimations. In addition, it is easy to see that the bias of this travel time

estimate would converge to zero as the number of observation increase (if 𝑘 is scaled

appropriately). Indeed, this approach is not limited by the low-dimensional model

assumption of our algorithm. However, in practice it has several drawbacks: first, it

is not particularly well suited to travel time estimation for origins and destinations for

which little data is available. This is a particularly damaging flaw because, as stated

before, origin-destination data is not very complete and is concentrated in regions

with more taxi traffic.

Second, this pure data-driven approach does not address the routing aspect of the

problem: with no knowledge of the network it cannot possibly provide information as

to which path should be used. These two drawbacks justify the use of our more com-

plicated network optimization approach, but the 𝑘-nearest neighbors scheme remains

125



k-NN Optimization [147]
Training trips Best 𝑘 RMSLE Best 𝜆 RMSLE RMSLE

100,000 16 0.3243 1e3 0.3595 -
10,000 11 0.3636 1e3 0.3775 -
1,000 7 0.4296 1e3 0.4019 0.8228

100 6 0.5556 1e3 0.4495 0.8822

Table 3.3: Effect of data density on 𝑘-nearest neighbors (k-NN), our optimization
method, and [147]’s method on the out-of-sample RMSLE. The best values of 𝑘 and
the continuity parameter 𝜆 are chosen. As before, the convergence threshold 𝛿 is set
to 0.5. For large amounts of data, 𝑘-nearest neighbors is unsurprisingly more accurate
than our optimization-based method (although not by much), but it performs much
worse in a low-data environment. [147]’s method is 10-20 times slower than ours
(untractable for 10,000 trips or more), and is less accurate.

a useful benchmark of our performance. Of course, we do not expect to produce more

accurate estimates than a 𝑘-nearest neighbors scheme when a wealth of taxi trips is

available. With a good method, however, we should be able to obtain more accurate

travel times than 𝑘-nearest neighbors in zones without much data, and only slightly

less accurate in zones where data is plentiful.

High Accuracy in Data-Poor Environments. To evaluate the impact of the

data-set size on our method, we compute travel times and paths for varying amounts

of training data and compare the obtained RMSLE values on the testing set with those

produced by the 𝑘-nearest neighbors approach. We also compare our results to those

produced by the travel time estimation method in [147] (for the small amounts of data

where it is tractable). The results are presented in Table 3.3: though, as expected, the

𝑘-nearest neighbors scheme outperforms the optimization method for high amounts

of data, it is significantly less accurate in a data-poor setting. Meanwhile, [147]’s

method is less accurate and also untractable for more than a small number of trips,

as the runtime was 10-20 times longer than ours (due to the much larger size of the

network as compared to the one used by the authors). Looking at the results, it seems

that with our method, simply recording the origin, destination and travel time of 100

taxi trips is enough to accurately estimate the traffic patterns in an entire city.

126



(a) 𝑁 = 102 (b) 𝑁 = 103 (c) 𝑁 = 104 (d) 𝑁 = 105

100%

> 250%

< 40%

Figure 3-9: Edge travel times in Manhattan (9-11AM) estimated by our algorithm
for an increasing number of input taxi trips 𝑁 . The color of each edge represents
the speed along that edge as a percentage of the reference velocity 𝑣0 = 13.85 kph
(average velocity in Manhattan on weekdays). With just 100 taxi trips, the algorithm
is able to identify that Midtown is generally congested, especially in the area around
Times Square and Penn Station, and that the shoreline highways are very fast. As
𝑁 increases, congestion patterns become more precise, and smaller congested areas
become apparent, for example around freeway ramps. For 𝑁 = 100, 000 (the largest
size that allows our algorithm to converge in less than 2 hours), we obtain a de-
tailed, edge-by-edge description of Manhattan traffic, without losing sight of global
congestion patterns.

127



The accuracy gap between our method and 𝑘-nearest neighbors is noticeable,

especially when you consider that our method also provides a path for any (𝑜, 𝑑) pair

in the network, which a simple 𝑘-nearest neighbors scheme can never provide since it

has no knowledge of the network. Therefore, in a data-poor environment, our scheme

is superior to a purely data-driven one in terms of accuracy and routing, and both

methods have a running time that is appropriate for the application (a few seconds

for 𝑘-nearest neighbors, a few minutes for our method). In a higher-data environment

we pay for the added routing information with a decrease in accuracy of just fractions

of a minute and an increase in computational time.

3.6 Conclusions

The method proposed in this chapter leverages a simple approach to tractably yield

accurate solutions to the travel time estimation and routing problem in a real-world

setting. Given trip times for any number of origin-destination pairs, from a few hun-

dred to a few hundred thousand, we can estimate the travel time from any origin to

any destination, as well as provide a sensible path associated with this travel time.

Furthermore, our algorithm is robust to a high degree of input uncertainty, success-

fully exploiting very noisy data to provide results characterized by their accuracy.

Providing travel times for each arc in the city effectively augments the network

with a cost function based on real traffic information, which can be of use both for

city planners and for further network-based research. Using our optimization-based

framework, we can estimate traffic patterns in a real-world network, providing insight

at every scale, from a few blocks to the entire city, and extracting global meaning

from the observed data.

128



Chapter 4

Optimizing Schools’ Start Time and

Bus Routes

In the twenty-first century, school districts across the US face a wide array of chal-

lenging problems on a daily basis, from adjusting to the digital age to educating an

increasingly diverse and multicultural student body. Yet perhaps the most compli-

cated decision that administrators face is seemingly the most innocuous: determining

what time each school in the district should start in the morning and end in the

afternoon.

The issue of choosing appropriate school “bell times” has received increased at-

tention in recent years, as too-early start times have been linked to a wide array of

health issues among teenagers, including diminished academic achievement [32] and

cognitive ability [43, 107], and increased rates of obesity [34], depression [58], and

traffic accidents [44]. Indeed, changes in the body’s circadian clock during puberty

effectively prevent adolescents from getting adequate sleep early in the night [42].

While the American Academy of Pediatrics recommends that teenagers not start

their school day before 8:30AM, a recent CDC report found that just 17.7% of U.S.

high schools comply [139]. Some experts estimate that over the next ten years, the

dire public health implications of early high school start times could impact the U.S.

economy by over $80 billion [67].

Moreover, research suggests that these repercussions disproportionately affect the

129



most economically disadvantaged students [56]. As achievement gaps between stu-

dents from different backgrounds remain stark [140], research has consistently found

systematic biases, largely on racial lines [37], that partially explain these gaps. For

example, school bell times can suffer from such biases, as is the case in Boston [126].

For decades, school districts across America have considered ways to adjust their

bell times and solve these issues in a fair way. However, the sheer complexity of the

problem is a major obstacle to change. School districts typically struggle with balanc-

ing many competing objectives, including student health, special education programs,

parent and staff schedules, state and federal regulations, and public externalities [93].

Perhaps the greatest obstacle to adjusting school bell times is the effect of changes

on school transportation. Over 50 percent of U.S. schoolchildren rely on an army of

half a million yellow school buses to travel to and from school every day. In Boston,

where specialized programs draw students from all over the city and traffic is often at a

standstill, transportation accounts for over 10% of the district’s $1 billion budget. To

reduce transportation spending, school districts such as Boston stagger the start and

end times of different schools, allowing vehicles to be re-used several times throughout

the day. Because many school districts construct bus routes by hand, it is exceedingly

difficult for them to evaluate the impact of bell time changes on bus costs, let alone

find a set of bell times that satisfies all of the district’s objectives without inflating

the budget. No matter how unpalatable, the status quo is often the only viable

option. In addition, because of the impossibility of systemwide change, districts may

experiment with a piecemeal approach to bell time change, where the most vocal and

best connected schools may benefit the most.

The problem of school bus routing has been addressed extensively [50, 109]. It

is typically decomposed into three main subproblems (see Fig. 4-1D-F): stop as-

signment, i.e., choosing locations where students will walk from their homes to get

picked up; bus routing, i.e., linking stops together into bus trips; and bus scheduling,

i.e., combining bus trips into a route that can be served by a single bus. State-

of-the-art optimization algorithms exist for these subproblems in isolation [123, 61].

However, the literature on optimally combining subproblem solutions is less extensive.

130



A B

C

F

D

E

Figure 4-1: Geographic visu-
alization of the school bus
routing problem (and subprob-
lems). (A) BPS 2017-18
data (anonymized) with gray
triangles representing students
and blue pentagons represent-
ing schools. (B) Sample BPS
routing solution, with schools
as blue pentagons, bus stops as
red squares, and lines connect-
ing bus stops that are served
in sequence by the same bus,
illustrating the complexity of
Boston school transportation.
(C) Small synthetic district (3
schools); students (triangles)
are the same color as their
assigned schools (pentagons).
(DEF) Example of 3 main
routing steps in this district:
stop assignment (D), where stu-
dents (triangles) attending the
orange school (pentagon) are
shown connected to their as-
signed stops (red squares); one-
school routing (E), where all
bus stops for the orange school
are connected into bus trips; and
bus scheduling between multi-
ple schools (F), where three
trips (one from each school)
are connected into a single bus
itinerary.

131



Approaches typically involve formulating the school bus routing problem as a large

combinatorial optimization problem which can be solved using metaheuristics, includ-

ing local search [128], simulated annealing [35], and special-purpose vehicle routing

heuristics [26, 25]. Special-purpose algorithms have also been designed to address

variants of the school bus routing problem, allowing “mixed loads” – students from

different schools riding the bus together [128, 25, 110], bus transfers [23], or arrival

time windows [61, 128, 35, 110].

Unfortunately, many tractable general-purpose algorithms do not consider addi-

tional constraints (fleet heterogeneity, student-specific needs) and thus lack portabil-

ity. Though an optimization framework to the School Time Selection Problem has

been proposed [138], no existing algorithms address bell time selection in conjunction

with bus routing [61].

This work presents a new model for the STSP, allowing the joint optimization of

school bell times with school bus routes. We first develop a new school bus routing

algorithm called BiRD (Bi-objective Routing Decomposition) which bridges the gap

between standard subproblems to find better solutions. We then propose a math-

ematical formulation of the STSP, a multi-objective approach that can model any

number of community objectives as well as transportation costs using BiRD.

BiRD outperforms state-of-the-art methods by 4% to 12% on average on bench-

mark data sets, and allowed Boston Public Schools (BPS) to take 50 buses off the road

and save almost $5 million in the fall of 2017, without increasing the average student’s

walking or riding times. Our modeling approach to the STSP, along with the suc-

cessful implementation of BiRD, led the Boston School Committee to reconsider start

time policies for the first time since 1990, unanimously approving a comprehensive

reform prioritizing student health in December 2017. Our STSP model was used by

BPS to evaluate the impact of many different scenarios and ultimately propose new

bell times for all 125 BPS schools. These start times are being reviewed at the request

of parent groups, and our approach remains central to Boston start time policy.

We first present general overview of our work, and we group most of the technical

content and experiment in the later “Technical Details” sections for better readability.

132



4.1 School Transportation: A BiRD’s Eye View

Solving the school bus routing problem means assigning students to stops near their

homes, selecting which bus will pick them up and in what order (keeping in mind that

a bus only carries students for one school, but can serve several schools in succession

thanks to staggered bell times), in a way that minimizes the overall number of buses,

or another objective of interest. We show an example of a school district (BPS) in

Fig. 4-1A and of a model school district that mimics the real setting in Fig. 4-1C

and in the SI Appendix, Fig. S2.

The BiRD algorithm consists of several steps (see Fig. 4-2) for which we develop

optimization-based approaches, implemented with modern software tools [20, 91] and

available online [48]. For clarity, we focus on the morning problem, but our algorithm

generalizes to the afternoon (see SI Appendix). Because problem details often vary

between districts, it may be advantageous to adjust some steps to changes in the

problem setting. BiRD’s defining feature is thus the decomposition of the problem,

and in particular the scenario selection step which bridges the gap between the single-

school and multi-school subproblems.

4.1.1 Single-School Problem

To assign students to stops (Fig. 4-1D), we use an integer optimization formulation of

the assignment problem, with maximum walking distance constraints. We minimize

the overall number of stops because (i) it simplifies bus trips and (ii) the minimum

pickup time at a stop is typically high, even if the stop has few students. When long

bus routes span the entire city, as in Boston (see Fig. 4-1B), stop assignment has a

negligible effect on the macroscopic quality of the routing solution. Our formulation

can include additional objectives, such as the total student walking distance, and can

exclude stop assignments that require students to cross major arteries or unsafe areas

(see SI Appendix, Stop Assignment).

We then use an insertion-based algorithm to connect sequences of stops into feasi-

ble bus trips (Fig. 4-1E). We use integer optimization to combine these feasible trips

133



INPUTOPTIMIZATIONOUTPUT

S
ingle S

chool
M

ultiple S
chools

S
top A

ssign
m

ent
R

outing

M
ultiple scenarios
for each schoo

l

S
cenario S

election
B

us S
che

dules

S
tudent

B
us S

top
S

chool

S
tudent hom

es
B

us stop locatio
ns

W
alking

lim
itatio

ns

S
chool locations

Travel tim
e estim

ates
B

us capacities
M

axim
um

 rid
ing tim

e

A
vailab

le bus fleet
Travel tim

e estim
ates

B
us yard

 location
A

vailab
le bus fleet

Travel tim
e estim

ates

B
us stops for each

school
A

ssigne
d stop for each 

student

B
us rou

tes for each
school, w

ith several 
potential solutions 
(scenarios)

S
electio

n of optim
al

scenario for each schoo
l

C
om

plete schedule
 

for each bus

F
igure

4-2:
O

verview
ofB

iR
D

algorithm
.

O
n

the
left,the

single-schoolproblem
can

be
divided

into
the

tw
o

subproblem
s

ofstop
assignm

ent
and

single-schoolrouting;on
the

right,the
m

ulti-schoolproblem
can

be
divided

into
the

tw
o

subproblem
s
ofscenario

selection
and

bus
scheduling.

T
he

generation
ofnot

one,but
severalrouting

scenarios
for

each
school,and

the
subsequent

joint
selection

ofa
single

scenario
for

each
school,bridge

the
divide

betw
een

the
single-schooland

m
ulti-schoolproblem

s.

134



with a minimum number of buses, with a set cover formulation reminiscent of crew

scheduling problems [127] (see SI Appendix, Single-School Routing). Our method has

the flexibility to handle practical modifications in the routing problem, from vehicles

with different capacities to student-bus compatibility restrictions (e.g. students in a

wheelchair need a bus with a special ramp/lift). In principle, the modularity of the

overall algorithm means that the single-school routing algorithm can be replaced with

any state-of-the-art vehicle routing method.

4.1.2 Routing Multiple Schools

We use the single-school routing method to generate not one, but several varied

optimized routing scenarios for each school, in order to select the best one for the

system. In particular, we consider several scenarios on the Pareto frontier of two

objectives (hence the name of Bi-objective Routing Decomposition), number of buses

and average riding time. This tradeoff makes sense because shorter routes are more

easily connected into bus schedules.

Then, we first jointly select one scenario for each school in a way that favors

maximal re-use of buses from school to school (Fig. 4-2), by formulating an integer

optimization problem with network flow structure that seeks to minimize the number

of buses at the scale of the entire district (see SI Appendix, Scenario Selection). Given

one routing scenario for each school, we can then solve another integer optimization

problem to identify a trip-by-trip itinerary for each bus in the fleet (Fig. 4-1F). In

this final subproblem, we optimize the number of buses jointly in the morning and in

the afternoon (see SI Appendix, Bus Scheduling).

4.1.3 Evaluating the Routing Algorithm

We compare BiRD’s ability to minimize the total number of buses to existing meth-

ods [25, 35], on 32 published benchmarks [110] and on 20 of our own synthetically-

generated examples. We outperform all other methods on all but one instance, with

an average improvement of 4% on the instances from [110] and 12% on our instances.

135



The scenario selection step is key to this improvement: computational experiments

(see SI Appendix, Routing Experiments) indicate that BiRD’s performance improves

by 20% when we compute two different routing scenarios for each school and select

the best one by considering the whole system, as opposed to using the best scenario

for each school. Intuitively, what is optimal for one school may not be optimal for

the entire system, motivating the bi-objective decomposition approach.

4.1.4 Application in Boston

BPS has the highest transportation expenditure per student in the U.S., with rising

costs due in part to narrow streets and infamous rush-hour traffic, a large fraction

of special education students, and a complicated history of school desegregation.

In addition, over the last decade BPS has adopted a “controlled choice” approach

to school selection, which gives parents greater latitude in selecting a public school

while promoting fairness across the district [1, 111]. As a result of this policy, some

schools may draw students from far across the city, further complicating the school

transportation problem and driving up costs.

Before we started working with BPS, bus routes for 125 public schools and over 80

private and charter schools were computed and maintained manually. BiRD’s ability

to incorporate district-specific constraints (including four different bus types, and

only one compatible with wheelchairs) was essential in producing a practical solution.

In the end, we solved the Boston school bus routing problem using only 530 buses,

against 650 for the manual solution. This represents an 18% reduction, with estimated

cost savings in the range of $10 to $15 million. To ensure a smooth transition, BPS

decided to only take 50 buses off the road in the first year of implementation, still

amounting to a hefty $5 million in cost savings [103]. Despite the smaller number

of buses, the average student ride time stayed constant from 2016-2017 (around 23

minutes).

136



4.2 Formulating the STSP

Selecting bell times is a complex policy problem with many stakeholders. We first

focus on the interplay with transportation, since computing school bus routes is a

necessary component of bell time selection. For instance, it is of interest to evaluate

transportation costs when each school 𝑆 is assigned a particular bell time 𝑡𝑆. However,

there are too many possibilities to explore in practice (exponential in the number of

schools). Instead, we develop a general formulation for the STSP, which contains

a tractable proxy for transportation cost constructed using BiRD. We show how to

include other community objectives in the next section.

4.2.1 Transportation Costs

A key factor in an optimized school bus routing solution is the “compatibility” of pairs

of trips, i.e., how easy it is for a single bus to serve them with minimum idle time in

between. We define a trip compatibility cost that trades off (a) the feasibility of a

bus serving the two trips sequentially, and (b) the amount of idle or empty driving

time involved, with tradeoff parameters that depend on characteristics of the school

district, and can be found using cross-validation. Then, for any pair of schools 𝑆

and 𝑆 ′, we can define a routing pairwise affinity cost 𝑐routing𝑆,𝑡,𝑆′,𝑡′ that is the sum of the

compatibility costs between every trip in every routing scenario for 𝑆 at time 𝑡 and

𝑆 ′ at 𝑡′ (see SI Appendix, Transportation Costs).

4.2.2 Optimizing

Because its objective function only includes pairwise affinity costs, our model of the

STSP is a special case of the Generalized Quadratic Assignment Problem (GQAP)

[68]. When different GQAP formulations for the STSP were investigated in [138], even

small instances could be intractable. We therefore develop a simple local improvement

heuristic that works well in practice. Given initial bell times, we select a random

subset of schools. The problem of finding the optimal start times for this subset,

while fixing all other schools’ start times, is also a GQAP.

137



Balanced Bell Times
151 buses

Synthetic District

Optimized - 3 bell times: 136 buses 

B

Optimized - every 5min: 134 buses 

33% students
between 

8:15 and 8:45

2018 Bell Times

Boston Public Schools

Optimized Bell Times (every 5min)
134 buses 

2018 Bell Times

A

Optimized Bell Times (3 tiers)
136 buses 

C

D

40%

10%

30%

20%

Start Time7:30 8:00 8:30 9:00

40%

10%

30%

20%

8:00 8:30 9:00 9:30

Figure 4-3: Bell time optimization. Comparison of 3 bell time optimization strategies
on a synthetic district. When only three bell times are allowed, balancing the number
of bus routes across bell times (A) works well, but is typically beaten by routing
compatibility optimization (B). Even better solutions can be obtained by allowing
more bell times in the middle tier (C). In comparison, BPS bell times are not even
balanced (D).

We can then solve this restricted GQAP problem using mixed-integer optimization

to obtain a new set of bell times, in seconds for small enough subsets. We repeat

the operation with new random subsets until convergence. Results on synthetic data

suggest that a subset size of one gives near-optimal results, if the local improvement

heuristic is run several times with random starting points. We note that the heuristic

is interpretable: with a subset size of 𝑛, a solution obtained after convergence can

only be improved by changing the bell times of at least 𝑛 + 1 schools.

138



4.2.3 Evaluating three-tier systems

In many districts, such as Boston (Fig. 4-3D), start times are separated into three

equally spaced “tiers” (e.g. 7:30AM, 8:30AM and 9:30AM). Such a system allows each

bus to serve up to three schools every morning [106], so districts will typically try

to balance the number of bus trips across all three tiers. Our method allows us to

quantify the empirical behavior of this intuitive idea.

Simulations suggest that optimizing three-tier bell times using our algorithm (Fig.

4-3A) yields an 11% cost improvement over simply balancing the number of bus

routes across tiers (Fig. 4-3B), which is already better than what school districts

typically do (Fig. 4-3D). Distributing schools across tiers without accounting for

geography/routing compatibility is suboptimal.

Furthermore, a three-tier system is not necessarily the right answer per se. Fig.

4-3C shows that allowing many possible start times for the middle tier (5-minute inter-

vals between 8:00AM and 9:00AM) can yield a 1-2% improvement over the standard

three-tier optimized solution (Fig. 4-3B). Interestingly, no school starts at 8:30AM

in this system. Though tiered bell times are popular because of their simplicity, algo-

rithmic tools such as ours suggest that better solutions exist. For instance, in Boston,

we can find a bell time solution that requires just 450 buses, which represents a 15%

improvement over the number of buses obtained without changing the bell times, and

a 31% improvement over the number of buses used by BPS in the 2016-2017 school

year.

4.3 Bell Times in Practice

In a real district, bell time selection goes far beyond minimizing the number of buses,

as we found in our work with BPS. For context, Boston’s existing bell time policy,

enacted in 1990, split the public schools into three tiers, with start times of 7:30AM,

8:30AM, and 9:30AM, stipulating that tiers would rotate through the start times

every 5 years. Unfortunately, this policy was never enforced, and the bell times

assigned in 1990 mostly remain today.

139



A

B C

$85K

$70K

$55K

$40K

Median
Household
Income

9:00

8:45

8:30

8:15

Average
Elementary
Start Time

Starting before

H
ig

h 
S

ch
oo

l S
tu

de
nt

s

Disadvantaged Students

B
el

l T
im

e 
S

u
rv

ey
 R

es
p.

 R
at

e

Economically 
Disadvantaged

Other

School

7:30 8:00 8:30 9:00 9:30

25%

50%

75%

20% 60% 100%

10%

20%

30%

100%

Figure 4-4: Equity and current start times in Boston. (A) Maps of Boston, with
neighborhoods shaded by median household income (ACS) and average elementary
start time. Elementary students start later in wealthier neighborhoods (0.78 corre-
lation between household income and start time). (B) Proportion of high school
students starting before each time in the morning (comparing economically disadvan-
taged and other students). Start times skew early for economically disadvantaged
high school students (𝜒2 homogeneity p-value < 10−5). (C) BPS Community Survey
response rate by school, shown against fraction of disadvantaged students attending
the school. Economically fragile populations have a lower bell time survey response
rate.

140



A

Buses Needed
R

ou
tin

g/
P

re
fe

re
nc

e 
T

ra
de

of
f

B
os

to
n 

20
1

7

CB

B
el

l T
im

e 
D

is
tr

ib
ut

io
n

A
M

P
M P

re
fe

re
nc

e 
S

co
re

B
el

l T
im

e 
C

ho
ic

e

40
0

50
0

60
0

70
0

80
0

35
%

40
%

45
%

50
%

55
%

B
el

l T
im

e 
P

re
fe

re
n

ce
 S

ur
ve

y

E
xa

m
p

le
: B

os
to

n 
R

en
ai

ss
an

ce
 E

S

Preference Score

S
ch

oo
l S

ta
rt

 T
im

e

Parents Top Choice

10
%

7:
00

8:
00

9:
00

5%15
%

80
%

40
%

F
ig

ur
e

4-
5:

O
pt

im
iz

in
g

pr
ef

er
en

ce
s

is
ha

rd
.

(A
)

Tr
ad

eo
ff

cu
rv

e
de

ri
ve

d
by

ou
r

al
go

ri
th

m
be

tw
ee

n
pr

ef
er

en
ce

sc
or

e
(m

et
ri

c
of

co
m

m
un

ity
sa

ti
sf

ac
ti

on
–

se
e

th
e

SI
A

pp
en

di
x,

B
os

to
n

C
om

m
un

ity
Su

rv
ey

)
an

d
tr

an
sp

or
ta

ti
on

co
st

,
al

on
g

w
it

h
th

re
e

se
ts

of
be

ll
ti

m
es

al
on

g
th

e
cu

rv
e.

E
ve

n
a

sl
ig

ht
im

pr
ov

em
en

t
in

sa
ti

sf
ac

ti
on

co
m

es
at

a
hi

gh
co

st
.

(B
)

D
is

tr
ic

t-
w

id
e

pr
ef

er
en

ce
sc

or
e

of
ea

ch
be

ll
ti

m
e,

sh
ow

in
g

th
at

pa
re

nt
s

ty
pi

ca
lly

pr
ef

er
8:

00
A

M
to

8:
30

A
M

st
ar

t
ti

m
es

,
w

it
h

hi
gh

va
ri

an
ce

.
(C

)
D

is
tr

ib
ut

io
n

of
pa

re
nt

s’
to

p
be

ll
ti

m
e

ch
oi

ce
at

a
pa

rt
ic

ul
ar

sc
ho

ol
(B

os
to

n
R

en
ai

ss
an

ce
).

E
ve

n
w

it
hi

n
a

si
ng

le
sc

ho
ol

,a
gr

ee
m

en
t

is
ha

rd
to

co
m

e
by

:
ev

en
th

ou
gh

th
e

sc
ho

ol
’s

cu
rr

en
t

st
ar

t
ti

m
e

is
7:

30
A

M
,o

nl
y

17
%

of
pa

re
nt

s
lis

t
th

is
ti

m
e

as
th

ei
r

fa
vo

ri
te

.

141



Figure 4-6: Bell time selection tradeoffs. Sample of a few scenarios considered by
BPS. Current start times (with or without new routes) have many high school stu-
dents starting before 8:00AM (Early HS) and elementary school students ending after
4:00PM (Late ES), mediocre community satisfaction (survey score), and a suboptimal
bell time distribution both in the morning and in the afternoon (histogram weighted
by students – blue AM, orange PM). The three other scenarios present different
tradeoffs between the bell time objectives – BPS chose the “Optimal” scenario.

These bell times are flawed. First, because they have remained static while school

demographics have evolved, they have contributed to the steady rise of the BPS

transportation budget over the last decade. Second, over 74% of high school students

currently start school before 8:00AM. Many studies have shown that the negative

effects of early high school starts are magnified in economically fragile students [56].

However, in Boston such students have worse bell times, on average, than economi-

cally advantaged students [126]. In Fig. 4-4, we see for example that economically

disadvantaged high school students are more likely to start before 7:30AM than other

high school students.

4.3.1 Gridlock

The Boston status quo has persisted for decades despite its shortcomings. Indeed,

bell time selection is intrinsically difficult because stakeholders cannot agree on what

is best for everyone. Figs. 4-5B and 4-5C show community preferences for different

start times across all public schools, obtained through a BPS survey. Though families

and school staff tend to favor start times between 8:00AM and 8:30AM, the displayed

preferences are mostly characterized by broad disagreement, even within a single

school (Fig. 4-5C). Any bell time for any school is sure to have both fervent supporters

142



and vehement critics.

School districts have no hope of satisfying all, or even most, of their constituents.

Moreover, the cost of even trying to satisfy the individual preferences of parents and

staff can be prohibitive: Fig. 4-5A shows that each additional point of community

satisfaction in Boston can cost dozens of additional buses and tens of millions of

taxpayer dollars.

For BPS, the tradeoff curve in Fig. 4-5A represented a paradigm shift, the first

time the district could visualize, or even quantify, any of the tradeoffs of bell time

policymaking. The curve illustrates our model’s first use: providing a district the

quantitative support necessary to understand the problem and make the best decision.

4.3.2 The Greater Good

Though stakeholders have many competing personal priorities, they often agree on

broader goals, such as having fair and equitable bell times or reinvesting saved trans-

portation costs into schools. Starting in 2016, BPS led an engagement process aiming

to understand broad community values. The results suggested four main objectives:

to maximize how many high school students start after 8:00AM, minimize how many

elementary school students end after 4:00PM, prioritize schools with high special ed-

ucation needs, and reinvest transportation savings into classrooms, while achieving

these objectives in an equitable manner.

In the general case, solving the STSP in practice means optimizing a set of several

objectives, such as the ones outlined above. We call an objective GQAP-representable

if it can be represented using only single affinity costs 𝑐𝑆,𝑡 (representing the aversion

of school 𝑆 for bell time 𝑡) and pairwise affinity costs 𝑐𝑆,𝑡,𝑆′,𝑡′ We find that the GQAP

framework has sufficient modeling power to represent all the objectives and constraints

that interest school districts in general (see SI Appendix, GQAP-Representable Ob-

jectives) and Boston in particular.

Typically, school districts will wish to balance multiple GQAP-representable ob-

jectives, including transportation costs. As is usual in multi-objective optimization,

we consider that the final cost function to optimize is a weighted average of the

143



district’s different (GQAP-representable) objectives, with weights indicating policy

makers’ priorities.

We explored tens of thousands of tradeoffs for BPS, such as those presented in

Fig. 4-6. We notice that in Boston, reducing both the number of high school students

starting too early and the number of elementary school students ending too late can

be done at little to no cost.

4.3.3 Application in Boston

In December 2017, the Boston School Committee unanimously approved a new policy

[129], stipulating that all future bell time solutions should optimize the verifiable cri-

teria described above, paving the way for algorithmic bell time selection. Our flexible

methodology allowed us to take into account a number of very specific constraints,

e.g. preventing large neighboring high schools to dismiss at the same time (which

could create unsafe situations at neighboring MBTA stops). In the end, the proposed

bell times (see Fig. 4-6) reduced the number of high school students starting before

8:00AM from 74% to 6%, and the number of elementary school students dismissing

after 4:00 from 33% to 15%. The plan also led to an estimated reinvestment of up

to $18 million into classrooms. Due to the significant amount of change under this

new plan, and in response to protests by some families, BPS delayed the plan’s im-

plementation to allow more time to adjust the objective weights and constraints. As

BPS continues to gather community input, the legitimate concerns raised by these

families can be modeled as objectives within our general formulation and integrated

within our framework.

Ultimately, using an algorithm for bell time selection at the scale of a city allows

leaders to thoroughly evaluate their options, and empowers them to make decisions

based not on the political whims of special interest groups, but on an objective stan-

dard agreed upon by the community.

In the following technical details sections, we dive into the algorithms, experi-

ments and mathematical formulations. We introduce the mathematical notation and

formalism needed to formulate and solve different optimization subproblems. We

144



first describe the BiRD school bus routing algorithm in full detail, then we specify

the setting of our computational experiments, in particular with respect to synthetic

data. Subsequently, we present our mathematical formulation of the School Time

Selection Problem (STSP), explain the details of our optimization algorithm and how

it interfaces with school bus routing, before detailing our computational work, on

both synthetic and real data.

4.4 Technical Details: BiRD Routing Algorithm

We begin by giving a complete mathematical description of the BiRD (Bi-objective

Routing Decomposition) algorithm for school bus routing. In the first sections, we de-

compose the overall problem of school transportation into a single-school problem and

multi-school problem. The single-school problem can be further decomposed into the

two subproblems of stop assignment and single-school routing, while the multi-school

problem can be further decomposed into the two subproblems of scenario selection

and bus scheduling (the overall decomposition is detailed diagrammatically in Fig.

2). In this section, we detail the four subproblems of stop assignment, single-school

routing, scenario selection and bus scheduling in order. Throughout the section, the

(mixed-)integer optimization problems that we formulate are solved using a mixed-

integer optimization solver.

4.4.1 Stop Assignment

Call 𝒮 the set of schools, and 𝒫𝑠 the set of pupils (students) attending each school

𝑆 ∈ 𝒮. In addition, call 𝒞 the set of all locations that can serve as bus stops. Each

student 𝑝 ∈ 𝒫𝑆 is associated with a set of allowed bus stops 𝒞𝑝 ⊆ 𝒞. The walking

distance from the home of student 𝑝 to a stop 𝑐 ∈ 𝒞𝑝 is denoted as 𝑑𝑝,𝑐. This general

setting reflects a variety of student-specific needs. For example, the allowed bus stops

for younger students may be closer to their home or accessible without crossing major

arteries. In addition, a pupil 𝑝 with special needs may require a “door-to-door” pickup:

in this case, the set 𝒞𝑝 is a singleton {𝑐}, where 𝑑𝑝,𝑐 = 0.

145



The problem of stop assignment has received attention in recent years, with the de-

velopment of innovative new modeling approaches and algorithms as in Zeng, Chopra

and Smilowitz [146]. We propose a simple integer optimization approach, where we

seek to minimize the number of stops for each school and the total student walking

distance. Similarly to a facility location problem [39], we solve the following integer

program for each school 𝑆.

min
∑︁
𝑐∈𝒞

𝑧𝑐 + 𝛽
∑︁
𝑝∈𝒫𝑆

∑︁
𝑐∈𝒞𝑝

𝑑𝑝,𝑐𝑦𝑝,𝑐 (4.1a)

s.t. 𝑦𝑝,𝑐 ≤ 𝑧𝑐 ∀𝑝 ∈ 𝒫𝑆, 𝑐 ∈ 𝒞𝑝 (4.1b)∑︁
𝑐∈𝒞𝑝

𝑦𝑝,𝑐 = 1 ∀𝑝 ∈ 𝒫𝑆 (4.1c)

𝑦𝑝,𝑐 ∈ {0, 1} ∀𝑝 ∈ 𝒫𝑆, 𝑐 ∈ 𝒞𝑝 (4.1d)

𝑧𝑐 ∈ {0, 1} ∀𝑐 ∈ 𝒞 (4.1e)

The binary variable 𝑧𝑐 indicates whether stop 𝑐 is selected for school 𝑆, and

the binary variable 𝑦𝑝,𝑐 indicates whether student 𝑝 is assigned to stop 𝑐. (4.1b)

ensures that student 𝑝 is assigned to stop 𝑐 only if stop 𝑐 is selected for school 𝑆,

and (4.1c) certifies that each student is assigned to one stop. The first term in the

objective corresponds to the total number of stops for school 𝑆, while the second

term corresponds to the total walking distance for students attending school 𝑆. The

parameter 𝛽 controls the tradeoff between these two priorities. For large values of 𝛽,

students will be assigned to the nearest stop to their home; as 𝛽 tends to 0, students

may walk further from their home in order to consolidate several stops (though never

to an unacceptable stop that is not in 𝒞𝑝). We explore this tradeoff on synthetic data

in Fig. 4-9a.

When applying this process in Boston, we added an additional constraint prevent-

ing the same stop from having too many students at the same time. This correlates

the stop assignment solutions of each school, requiring the concurrent optimization

of stop assignments for all schools.

146



4.4.2 Single-School Routing

Given that each student 𝑝 has been assigned a bus stop 𝑐𝑝 ∈ 𝒞𝑝, we now turn to the

problem of connecting stops into bus routes (or bus trips). Since several students

may be assigned to the same stop, we can denote as 𝒞𝑆 ⊆ 𝒞 the set of bus stops with

at least one student from school S, and call 𝑛𝑐,𝑆 the number of students from school

𝑆 at a stop 𝑐 ∈ 𝒞𝑆.

We consider that the bus fleet is composed of several bus types, and denote the

set of bus types as ℬ. All buses of a given type 𝑏 ∈ ℬ are considered identical, with a

fixed number of seats (capacity) 𝑄𝑏, and a fixed number of wheelchair spots 𝑊𝑏. Let

𝒴 designate the set of bus depots (or bus yards) where buses are stored during the

night and the middle of the day.

We let 𝑡pickup
𝑐,𝑆 designate the length of time needed to pick up every student for

school 𝑆 at stop 𝑐, and 𝑡drop-off
𝑆 the length of time needed to drop off every student on

a bus at school 𝑆. Note that the former is a function of the number of students at the

stop 𝑛𝑐,𝑆, while the latter is independent of the number of students on the bus. For

any two locations ℓ1, ℓ2 ∈ 𝒮 ∪ 𝒞 ∪ 𝒴 , and given a particular time of day 𝜏 , let 𝑡drive
ℓ1,ℓ2,𝜏

designate the driving time from location ℓ1 to location ℓ2, when departing location ℓ1

at time 𝜏 . Finally, we consider that all buses serving school 𝑆 must arrive at school

at time 𝜏𝑆 to drop off their students, and are therefore free to leave the school at time

𝜏𝑆 + 𝑡drop-off
𝑆 . We also consider that students cannot spend more than a fixed duration

𝑇max on the bus.

Throughout this chapter, we consider that the travel times 𝑡drive
ℓ1,ℓ2,𝜏

are deterministic

and known. We note that this modeling choice makes it more difficult to account for

unforeseen traffic events such as accidents. These travel times can be obtained through

a commercial service like the Google Maps API, or estimated from data. In practice,

school bus routes are typically constructed under a static, deterministic travel time

model, and stakeholders understand that this results in buses sometimes arriving

late, especially in poor weather or traffic conditions. As a simple way to mitigate the

impact of traffic in our work with BPS, we artificially increased the drop-off times

147



𝑡drop-off
𝑆 at each school, e.g. requiring buses to arrive at school 10 or 15 minutes before

the beginning of school even though physically unloading students may only require

3 minutes. This “buffer” both reduces the chance that students will be late to class,

and makes it less likely that delays will be compounded onto the bus’s next trip.

However, no matter what travel time estimates are used, it is practically impossible

for buses to always be on time.

For school 𝑆, there are many methods from the vehicle routing literature to find

bus trips to serve all the stops in 𝒞𝑆 [50, 109, 123, 22]. A trip (or route) is simply an

ordered sequence of stops visited, or served, by a bus. We assume that a bus serving

a trip will pick up every student at each stop in the trip. A trip is considered feasible

if (a) it verifies that no student spends more than a time 𝑇max between pickup and

drop-off, and (b) there exists a type of vehicle in the fleet with enough capacity to

transport all students assigned to the stops served by the trip. Given a feasible trip

𝑅, we let ℬ𝑅 ⊆ ℬ designate the set of types of buses that have the necessary capacity

to serve the trip, and we denote by 𝑇𝑅 the service time of the trip, i.e. the time

between arrival at the first stop and arrival at the destination school.

We use a randomized greedy heuristic (Algorithm 1) similar to Braca et al. [25, 26]

to generate a set of feasible trips 𝒯𝑆, making sure that each stop 𝑐 ∈ 𝒞𝑆 is served by

a nonempty set of feasible trips 𝒯𝑐 ⊂ 𝒯𝑆. More precisely, the heuristic returns a set

of trips 𝒯 that covers each stop exactly once, and we run it 𝑁 times to build a set

of feasible trips where each stop is covered by several trips. The heuristic returns 𝑁

different solutions and each stop will be covered by 𝑁 different feasible trips.

We index the trips in 𝒯𝑆 by 1, . . . ,𝑚𝑆 and for a given set of trips 𝒯 ⊆ 𝒯𝑆 we let

𝐼(𝒯 ) designate the subset of {1, . . . ,𝑚𝑆} corresponding to trips in 𝒯 . We can then

148



Algorithm 4 Randomized greedy insertion heuristic, assuming only one type of bus
with capacity 𝑄. Input: a school 𝑆 and a time of day 𝜏

1: function GreedyRandomized(𝑆, 𝜏)
2: 𝒯 ← ∅ ◁ Initialize empty set of trips
3: while 𝒞𝑆 ̸= ∅ do
4: 𝑐 randomly selected from 𝒞𝑆
5: 𝒞𝑆 ← 𝒞𝑆∖{𝑐}
6: 𝑅← [𝑐] ◁ Trip initialized with selected stop 𝑐
7: 𝑁 students ← 𝑛𝑐,𝑆 ◁ Number of students currently on trip 𝑅
8: while 𝒞𝑆 ̸= ∅ do
9: 𝑇 new, 𝑐new, 𝑖new ← BestInsertion(𝑅, 𝒞𝑆, 𝜏)

10: if 𝑇 new ≤ 𝑇max and 𝑁 students + 𝑛𝑐new,𝑆 ≤ 𝑄 then
11: 𝑅← Insert(𝑅, 𝑐new, 𝑖new)
12: 𝒞𝑆 ← 𝒞𝑆∖{𝑐new}
13: else
14: break
15: 𝒯 ← 𝒯 ∪ {𝑅}
16: return 𝒯
17: function BestInsertion(𝑅, 𝒞𝑆, 𝜏)
18: Let 𝑅 := [𝑐1, 𝑐2, . . . , 𝑐𝑛] ◁ Name the 𝑛 stops in 𝑅 for clarity of notation
19: 𝑇 best ←∞; 𝑐best ←∞; 𝑖best ←∞ ◁ Total time, inserted stop, insertion index
20: for 𝑐 ∈ 𝒞𝑆 do
21: for 𝑖← 0 to 𝑛 do
22: 𝑇 ← 𝑡pickup

𝑐,𝑆 ◁ Include pickup time first
23: if i = 0 then
24: 𝑇 ← 𝑇 + 𝑡drive

𝑐,𝑐1,𝜏
+
∑︀𝑛−1

𝑗=1 𝑡
drive
𝑐𝑗 ,𝑐𝑗+1,𝜏

+ 𝑡drive
𝑐𝑛,𝑆,𝜏

◁ 𝑐 inserted before 𝑐1
25: else if i=n then
26: 𝑇 ← 𝑇 +

∑︀𝑛−1
𝑗=1 𝑡

drive
𝑐𝑗 ,𝑐𝑗+1,𝜏

+ 𝑡drive
𝑐𝑛,𝑐,𝜏 + 𝑡drive

𝑐,𝑆,𝜏 ◁ 𝑐 inserted after 𝑐𝑛
27: else
28: 𝑇 ← 𝑇 +

∑︀𝑖
𝑗=1 𝑡

drive
𝑐𝑗 ,𝑐𝑗+1,𝜏

+ 𝑡drive
𝑐𝑖,𝑐,𝜏

+ 𝑡drive
𝑐,𝑐𝑖+1,𝜏

+
∑︀𝑛−1

𝑗=𝑖+1 𝑡
drive
𝑐𝑗 ,𝑐𝑗+1,𝜏

+ 𝑡drive
𝑐𝑛,𝑆,𝜏

◁ 𝑐 inserted between 𝑐𝑖 and 𝑐𝑖+1

29: if 𝑇 < 𝑇 best then
30: 𝑇 best ← 𝑇 ; 𝑐best ← 𝑐; 𝑖best ← 𝑖

31: 𝑇 best ← 𝑇 best +
∑︀𝑛

𝑗=1 𝑡
pickup
𝑐𝑗 ,𝑆

32: return 𝑇 best, 𝑐best, 𝑖best

33: function Insert(R, c, i)
34: Let 𝑅 := [𝑐1, 𝑐2, . . . , 𝑐𝑛]
35: if i = 0 then
36: 𝑅← [𝑐, 𝑐1, . . . , 𝑐𝑛]
37: else if i=n then
38: 𝑅← [𝑐1, . . . , 𝑐𝑛, 𝑐]
39: else
40: 𝑅← [𝑐1, . . . , 𝑐𝑖, 𝑐, 𝑐𝑖+1, . . . , 𝑐𝑛]

41: return R

149



find the best set of routes by solving the following minimum cover problem [127].

min 𝜆

𝑚𝑆∑︁
𝑖=1

𝑟𝑖 +

𝑚𝑆∑︁
𝑖=1

𝑟𝑖Θ𝑖 (4.2a)

s.t.
∑︁

𝑖∈𝐼(𝒯𝑐)

𝑟𝑖 ≥ 1 ∀𝑐 ∈ 𝒞𝑆 (4.2b)

𝑟𝑖 ∈ {0, 1} ∀𝑖 ∈ {1, . . . ,𝑚𝑆} (4.2c)

The binary variable 𝑟𝑖 indicates whether trip 𝑖 is selected. Constraint (4.2b)

imposes that every stop must be served by at least one trip. For each trip 𝑖 in 𝒯𝑆, we

have Θ𝑖 =
∑︀

𝑝:𝑐𝑝∈𝐶𝑖
𝜃
(𝑖)
𝑝 , where 𝐶𝑖 represents the list of stops served by the 𝑖-th trip 𝑖,

and 𝜃
(𝑖)
𝑝 corresponds to the time spent by student 𝑝 on the bus during trip 𝑖. Thus,

the parameter 𝜆 controls the importance of the number of trips relative to the total

time students spend on the bus.

In the optimal solution of the problem above, some stops may be served by more

than one trip. We consider the set of trips 𝒯 opt
𝑐 ⊂ 𝒯𝑆 serving each such stop 𝑐. For

each 𝑖 ∈ 𝐼(𝒯 opt
𝑐 ), we compute the improvement 𝛿𝑖 to the objective of (4.2) that would

be obtained by removing stop 𝑐 from trip 𝑖. We let 𝑐 remain in trip 𝑗, such that

𝑗 = arg min𝑖∈𝐼(𝒯 opt
𝑐 ) 𝛿𝑖, and remove it from all other trips in 𝒯 opt

𝑐 .

To gain tractability at the expense of full optimality, it is easy to split up this trip

selection phase into 𝐾 phases, where the first phase selects the best trips among the

first 𝑁/𝐾 greedy solutions, then the second phase selects the best trips among the

trips from the next 𝑁/𝐾 routing solutions and the optimal trips from the first phase,

etc.

The output of this algorithm is a set of trips 𝒯 *
𝑆 that covers every stop in 𝒞𝑆

exactly once. We can perform this iterative optimization algorithm several times

for different values of the tradeoff parameter 𝜆 to obtain an array of varied routing

scenarios for each school. Low values of 𝜆 will lead to scenarios with more buses but

shorter trips, while high values of 𝜆 will produce scenarios with longer trips but fewer

buses.

For each school 𝑆 ∈ 𝒮, we therefore end up with a set of routing scenarios ℛ𝑆 =

150



{𝒯 ℎ
𝑆 }

ℎ=ℎ𝑆
ℎ=1 , where each scenario is a complete set of trips 𝒯 ℎ

𝑆 that covers every stop

in 𝒞𝑆 exactly once. Each scenario is located in a different region of the Pareto front

between two objectives, the number of buses and the average student travel time,

hence the name of Bi-objective Routing Decomposition (BiRD).

Because our overall school bus routing approach is modular, the methods we

propose to solve the single-school routing problem can easily be replaced, e.g. by

heuristic approaches [35]. The only requirement on such substitute approaches is

that they be able to produce several different solutions for each school, trading off

between the average time students spend on the bus and the number of bus trips.

4.4.3 Scenario Selection

We develop a bus scheduling algorithm that bridges the gap with the bus routing

problem. The algorithm takes as input a set of scenarios ℛ𝑆 of size ℎ𝑆 for each school

𝑆. Because what is optimal for one school may not be optimal for the entire system,

our goal is to jointly select one scenario for each school in a way that minimizes the

desired objective (e.g. number of buses) across the whole district.

In order to select a single-school solution for each school in a way that minimizes

the total number of buses, we formulate an integer network flow problem on a graph

where nodes represent bus trips, which are served when they are traversed by a unit

of flow. To simplify notation, we assume at first there exists only one type of bus;

we then create the following “scenario selection graph” (𝒩 ,𝒜). The set of nodes 𝒩

consists of (i) a single depot node 𝑦, (ii) a “trip node” 𝜌𝑆,ℎ,𝑅 for each school 𝑆, each

scenario index 1 ≤ ℎ ≤ ℎ𝑆, and each trip 𝑅 ∈ 𝒯 ℎ
𝑆 , and (iii) an “availability node”

𝑎𝑆,ℎ for each school 𝑆 and for each routing scenario 1 ≤ ℎ ≤ ℎ𝑆. The set of arcs

𝒜 includes an arc from 𝑦 to each trip node 𝜌𝑆,ℎ,𝑅, from each trip node 𝜌𝑆,ℎ,𝑅 to the

corresponding availability node 𝑎𝑆,ℎ, and from each availability node 𝑎𝑆,ℎ back to the

depot 𝑦. We also include an arc from each availability node 𝑎𝑆,ℎ to each trip node

𝜌𝑆′,ℎ′,𝑅′ where trip 𝑅′ ∈ 𝒯 ℎ′

𝑆′ is time-compatible with a bus starting from school 𝑆. By

time-compatible we mean that there is enough time for the bus to drive from school

𝑆 to the first stop 𝑐start
𝑅′ of trip 𝑅′ and then make it to school 𝑆 ′ on time, which can

151



Figure 4-7: Diagram of the scenario selection graph for a small example of a school
bus routing problem with three schools. Each school is represented by a diagonally
striped rectangle, with two associated routing scenarios, represented by lightly shaded
rectangles within the larger rectangle of the school. Note that for the two schools
on the left, the two scenarios do not have the same overall number of trips (e.g. 3
trips vs. 2 trips for School 1), while this is not the case for the school on the right
(both scenarios consist of two trips). Black arrows represent edges from trip nodes
to availability nodes (within each school), and from availability nodes to trip nodes
(modeling bus reuse between schools). Light gray arrows represent edges between
trip/availability nodes and the yard/depot node.

152



be expressed as 𝜏𝑆 + 𝑡drop-off
𝑆 + 𝑡drive

𝑆,𝑐start
𝑅′ ,𝜏𝑆

+𝑇𝑅 ≤ 𝜏𝑆′ . For a node 𝑖 ∈ 𝒩 , let ℐ(𝑖) ⊆ 𝒩 be

the in-neighborhood of node 𝑖, and 𝒪(𝑖) ⊆ 𝒩 designate the out-neighborhood of 𝑖.

We display a diagram of the scenario selection graph for a small example with three

schools in Fig. 4-7.

Given the graph described above, we consider that a unit of flow traversing a series

of trip nodes corresponds to a bus serving the corresponding trips in order. Therefore,

minimizing the total number of buses corresponds to minimizing the total flow out

of the yard node 𝑦 subject to the constraints that (a) flows along all arcs must be

integral and (b) given that a particular single-school routing solution 𝒯 ℎ
𝑆 is selected

for school 𝑆, every trip 𝑅 ∈ 𝒯 ℎ
𝑆 must be served by exactly one bus (i.e. each node

𝜌𝑆,ℎ,𝑅 is traversed by exactly one unit of flow). We therefore formulate the following

network flow problem with integer flow variables 𝑓 𝑗
𝑖 for each arc (𝑖, 𝑗).

min
∑︁
𝑆∈𝒮

ℎ𝑆∑︁
ℎ=1

∑︁
𝑅∈𝒯 ℎ

𝑆

𝑓
𝜌𝑆,ℎ,𝑅
𝑦 (4.3a)

s.t. 𝑓
𝑎𝑆,ℎ
𝜌𝑆,ℎ,𝑅 = 𝑧𝑆,ℎ 𝑆 ∈ 𝒮, 1 ≤ ℎ ∈ ℎ𝑆, 𝑅 ∈ 𝒯 ℎ

𝑆 (4.3b)∑︁
𝑗∈ℐ(𝑖)

𝑓 𝑖
𝑗 =

∑︁
𝑗∈𝒪(𝑖)

𝑓 𝑗
𝑖 ∀𝑖 ∈ 𝒩 (4.3c)

ℎ𝑆∑︁
ℎ=1

𝑧𝑆,ℎ = 1 ∀𝑆 ∈ 𝒮 (4.3d)

𝑧𝑆,ℎ ∈ {0, 1} ∀𝑆 ∈ 𝒮, 1 ≤ ℎ ≤ ℎ𝑆 (4.3e)

𝑓 𝑗
𝑖 ∈ Z+ ∀(𝑖, 𝑗) ∈ 𝒜. (4.3f)

The binary variable 𝑧𝑆,ℎ is 1 if 𝒯 ℎ
𝑆 is the selected set of trips for school 𝑆, and

constraint (4.3d) ensures that exactly one set of trips is selected for each school.

Constraint (4.3c) ensures conservation of flow 𝑓 𝑗
𝑖 at each node 𝑖, with the following

interpretation at each node. At the depot node 𝑦, it means that buses leaving the

depot must eventually come back. At a trip node 𝜌𝑆,ℎ,𝑅, it means that a bus serving

trip 𝑅 must then become available at school 𝑆 at time 𝜏𝑆 + 𝑡drop-off
𝑆 . At an availability

node 𝑎𝑆,ℎ, it means that a bus that is available at a school after serving a trip must

153



either return to the yard or serve another trip. Constraint (4.3b) guarantees that a

particular set of trips is selected if and only if each trip is assigned to exactly one bus.

The formulation above has a large number of integer variables, on the order of 2

million for a problem with 200 schools and 5 scenarios per school. However, commer-

cial solvers such as Gurobi can solve it to optimality in less than two hours. Intuitively,

the network flow formulation is quite strong, allowing the relaxation-based techniques

and other heuristics implemented in modern MIO solvers to tackle it successfully.

The formulation above can easily be modified if there is more than one type of

bus available (|ℬ| > 1). All we need to do is create a new graph such that each trip

node 𝜌𝑆,ℎ,𝑅 maps to the set of nodes {𝜌𝑆,ℎ,𝑅,𝑏}𝑏∈ℬ𝑅
in the new graph (one for each bus

type), and similarly map the yard node 𝑦 and the availability nodes for each school

𝑎𝑆,ℎ to sets of nodes {𝑦𝑏}𝑏∈ℬ and {𝑎𝑆,ℎ,𝑏}𝑏∈ℬ. For every arc (𝑖, 𝑗) in the original arc set

𝒜, we create a new arc (𝑖𝑏, 𝑗𝑏) in the new graph, and modify constraint (4.3b) such

that only one of the trip nodes {𝜌𝑆,ℎ,𝑅,𝑏}𝑏∈ℬ𝑅
can be traversed, effectively selecting

the bus type that will serve trip 𝑅.

4.4.4 Bus Scheduling

The last step of our routing methodology involves determining final bus schedules

given exactly one routing scenario for each school. We use a similar approach to the

one described above for scenario selection. We define a “bus selection graph” (𝒩̄ ,𝒜),

where the set of nodes 𝒩̄ consists of (i) a node 𝑦𝑏,ℓ for each bus type 𝑏 ∈ ℬ and each

physical bus depot location ℓ ∈ ℒ, (ii) a trip node 𝜌AM
𝑆,𝑅,𝑏,ℓ (respectively 𝜌PM

𝑆,𝑅,𝑏,ℓ) for

each school 𝑆, each morning trip 𝑅 in the selected scenario 𝒯 AM
𝑆 (respectively each

afternoon trip 𝑅 ∈ 𝒯 PM
𝑆 ), each bus type 𝑏 ∈ ℬ𝑅, and each depot location ℓ ∈ ℒ.

The set of arcs 𝒜 includes (i) an arc to and from the depot node 𝑦𝑏,ℓ for each

trip node 𝜌AM
𝑆,𝑅,𝑏,ℓ and 𝜌PM

𝑆,𝑅,𝑏,ℓ, (ii) an arc from each trip node 𝜌AM
𝑆,𝑅,𝑏,𝑙 (resp. 𝜌PM

𝑆,𝑅,𝑏,𝑙) to

each trip node 𝜌AM
𝑆′,𝑅′,𝑏,𝑙 (resp. 𝜌PM

𝑆′,𝑅′,𝑏,𝑙) where trip 𝑅′ for school 𝑆 ′ is time-compatible

with a bus starting from school 𝑆. For a node 𝑖 ∈ 𝒩̄ , let ℐ̄(𝑖) ⊆ 𝒩̄ designate the

in-neighborhood of node 𝑖, and 𝒪̄(𝑖) ⊆ 𝒩̄ designate the out-neighborhood of 𝑖. For

depot nodes 𝑦𝑏,ℓ, define 𝒪̄AM(𝑦𝑏,ℓ) = 𝒪̄(𝑦𝑏,ℓ) ∩ {𝜌AM
𝑆,𝑅,𝑏,ℓ ∈ 𝒩̄ : 𝑆 ∈ 𝒮, 𝑅 ∈ 𝒯 AM

𝑆 }, and

154



define 𝒪̄PM(𝑦𝑏,ℓ) similarly. We assign a cost 𝑐𝑖,𝑗 to each arc (𝑖, 𝑗) ∈ 𝒜 to represent

the objective we are trying to optimize (fuel consumption, driving distance, etc.),

and introduce auxiliary variables to minimize the number of buses. Solving the bus

scheduling problem corresponds to solving the following mixed-integer optimization

problem.

min 𝛾
∑︁
𝑏∈ℬ

∑︁
ℓ∈ℒ

𝑐𝑏𝐾𝑏,ℓ + (1− 𝛾)
∑︁

(𝑖,𝑗)∈𝒜

𝑐𝑖,𝑗𝑓
𝑗
𝑖 (4.4a)

∑︁
𝑗∈ℐ̄(𝑖)

𝑓 𝑖
𝑗 =

∑︁
𝑗∈𝒪̄(𝑖)

𝑓 𝑗
𝑖 ∀𝑖 ∈ 𝒩̄

(4.4b)∑︁
𝑏∈ℬ

∑︁
ℓ∈ℒ

∑︁
𝑖∈ℐ̄(𝜌𝑞𝑆,𝑅,𝑏,𝑙)

𝑓
𝜌𝑞𝑆,𝑅,𝑏,ℓ

𝑖 = 1 ∀𝑆 ∈ 𝒮,∀𝑅 ∈ 𝒯 𝑞
𝑆 , 𝑞 ∈ {AM,PM}

(4.4c)∑︁
𝑖∈𝒪̄𝑞(𝑦𝑏,ℓ)

𝑓 𝑖
𝑦𝑏,ℓ
≤ 𝐾𝑏,ℓ ∀𝑏 ∈ ℬ, ℓ ∈ ℒ, 𝑞 ∈ {AM,PM}

(4.4d)

𝐾𝑏,ℓ ∈ Z+ ∀𝑏 ∈ ℬ, ∀ℓ ∈ ℒ

(4.4e)

𝑓 𝑗
𝑖 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝒜.

(4.4f)

The flow variables indicate 𝑓 𝑗
𝑖 select the bus type and origin depot for the bus

serving each trip, as well as the sequence of trips served by each bus. Meanwhile, the

variables 𝐾𝑏,ℓ represent the number of buses of type 𝑏 coming from bus yard location

𝑙, and they are related to the variables 𝑓 𝑗
𝑖 by constraint (4.4d). Constraint (4.4b)

enforces flow conservation, which simply means that buses must leave the yard, serve

at least one trip, and then return to the yard. Constraint (4.4c) enforces that each trip

is served by exactly one bus, from one particular depot location and of one particular

type. In the objective, 𝑐𝑏 > 0 represents the cost of a bus of type 𝑏, 𝑐𝑖,𝑗 designates the

155



cost of a particular edge in the graph (driving distance, fuel consumption, etc.), and

𝛾 controls the relative importance of the two parts of the objective (number of buses

and driving distance/fuel consumption). Note that the combination of constraint

(4.4d) and the positive cost associated with 𝐾𝑏,ℓ in the objective ensure that 𝐾𝑏,ℓ is

the maximum of the number of morning buses and the number of afternoon buses (of

type 𝑏, from location ℓ).

While the previous subproblem of scenario selection has not been priorly studied

to our knowledge, the bus scheduling subproblem has received significant attention,

from Fügenschuh [61], Bögl et al. [23], Spada et al. [128], and others.

Readers will note that we only solve the morning and afternoon problems jointly

in the last step (bus scheduling) of the BiRD algorithm. In principle, there is no

reason not to solve morning and afternoon together at the scenario selection step

as well. However, we found that treating morning and afternoon separately at the

scenario selection step did not significantly affect the final solution while meaningfully

improving tractability.

4.5 Technical Details: Routing Experiments

We now describe the setting for our computational experiments, and present a more

thorough overview of the results from the first sections. We evaluate BiRD using

our own synthetic examples, as well as sample problems from the literature. We first

illustrate the way we generate synthetic experiments and the insights that they can

provide. We then detail the process used to compare BiRD to existing approaches

from the literature, using synthetic problems from Park, Tae and Kim [110].

4.5.1 Synthetic Experiments and Results

In order to build intuition about the BiRD algorithmic framework, we first study

its performance on our own synthetically generated examples. We consider a school

district as a square (30km by 30km) in the 2D plane, in which we sample |𝒮| school

locations at random. We fix the total number of students to |𝒫|, among which we

156



A B

Figure 4-8: Geographic visualizations of two school districts. Small gray triangles
represent students, while larger blue pentagons represent schools. (A) Boston Public
Schools, 2017-18 school year (anonymized). (B) Synthetic school district with 100
schools, generated as described in the section 4.5.1 on Synthetic Experiments.

sample |𝒮|−1 students 𝑝𝑖1 , . . . , 𝑝𝑖|𝒮|−1
uniformly at random without replacement, and

enforce WLOG that 0 = 𝑖0 < 𝑖1 < . . . < 𝑖|𝒮|−1 < 𝑖|𝒮| = |𝒫|. Then we assign all

students 𝑝𝑖 such that 𝑖𝑘−1 < 𝑖 ≤ 𝑖𝑘 to school 𝑘. For any point 𝑥 and any positive

real number 𝜌, let 𝒰𝜌(𝑥) designate the uniform distribution over the disk of radius 𝜌

centered at 𝑥.

For each school with location 𝑥𝑆, we select a radius 𝑅𝑆 ∼ 𝒰(𝑅𝑆, 𝑅𝑆). The first

student for that school is assigned a location sampled from 𝒰𝑅(𝑥𝑆), and every subse-

quent student location is sampled with probability 𝑞 from 𝒰𝑟(𝑥𝑝), where 𝑥𝑝 designates

the location of the previous student, and with probability 1 − 𝑞 from 𝒰𝑅(𝑥𝑆). This

procedure creates small clusters of students which can be thought of as small “neigh-

borhoods”. Each school is randomly assigned a start time of 7:30, 8:30, or 9:30, and

157



150 200 250 300 350
average student walking distance

40

50

60

70

80

st
op

s p
er

 sc
ho

ol

(a) Tradeoff between average number of stops
per school and average student-to-stop walk-
ing distance. Experiment on synthetic school
district with 100 schools and 10,000 students.
As the average walking distance increases,
the number of stops decreases. The convex-
ity of the tradeoff curve suggests diminishing
returns in increasing the average walking dis-
tance.

1 2 3 4 5 6 7 8 9 10
scenarios

0

25

50

75

100

Bu
se

s

AM
PM

(b) Effect of the number of scenarios on the
total number of buses. As we increase the
number of varied scenarios for each school,
we create more room for optimization: the
algorithm can select shorter routes for some
schools, and longer routes for other schools,
in a way that maximizes bus re-use. Overall,
using several scenarios can yield as much as
a 25% improvement in the number of buses.
Using just two scenarios for school already
improves the objective by 20%. Results are
averaged over 100 random synthetic districts,
with error bars corresponding to the standard
deviation of the number of buses.

Figure 4-9: Analysis of performance of algorithm components on synthetic data.

158



a day length of 7, 8, or 9 hours. Finally, for each student with location 𝑥𝑝, we create

a bus stop with location sampled from 𝒰𝑟𝑠(𝑥𝑝). A large example of a synthetically

generated district is shown in Fig. 4-8.

We begin with the stop assignment problem, exploring the tradeoff between the

average student walking distance and the number of stops per school. We generate

100 synthetic school district instances with 100 schools and 10,000 students, and

vary the stop assignment tradeoff parameter 𝛽. The results can be seen in Fig. 4-9a,

showing that it is possible to reduce the average student walking distance by more

than 25% without adding more than one or two stops per school.

Next, we generate 100 synthetic instances with 50 schools and 5,000 students to

study the effect of the number of scenarios. For each school, we generate ten scenarios

with different values of the single-school tradeoff parameter 𝜆. For each scenario, we

combine randomized routes such that each stop is covered by 400 routes, in 20 phases

of 20 routes each. Then we solve the scenario-selection problem using 𝜌 scenarios, for

𝜌 = 1, . . . , 10. We use cross-validation to select the specific subset of size 𝜌 among the

considered values of 𝜆. The results, shown in Fig. 4-9b support the intuitive statement

that “what is optimal for one school may not be optimal for the entire system”, as

choosing two routing options for each school yields a 20% improvement over choosing

just one. In addition, the number of scenarios quickly yields diminishing returns,

which is useful because it enables us to solve the scenario selection problem with two

or three scenarios per school (increasing tractability) and obtain a solution that is

almost as good as one computed with many more scenarios per school.

4.5.2 Comparison with Existing Methods

We have shown empirically that our approach of computing several single-school

scenarios and jointly selecting the best option for each school gives very good results.

In this section, we compare the performance of the BiRD algorithm to other methods

from the literature.

We first compare the performance of the algorithm on benchmark synthetic data

sets from Park, Tae and Kim [110]. As we mentioned before, the school bus routing

159



problem has a large number of variants, including mixed loads and drop-off time

windows. The benchmark data sets have a time window (between 10 and 30 minutes

depending on the school) associated with each school corresponding to possible drop-

off times, and buses serving the same school can thus arrive at different times. In

contrast, our implementation of BiRD assumes that all buses for a given school must

arrive at the same time. We therefore modify the benchmark data-sets such that all

school start times are fixed at the beginning of the provided time window.

Having computed a single start time for each school, we are now ready to solve

the school bus routing problem. We consider two categories of benchmarks, RSRB

and CSCB, which are generated slightly differently (see the original paper for details).

Each one assumes that stop assignment has been performed as a preprocessing step,

and can be solved assuming the maximum ride time 𝑇max is 45 minutes (2700 s) or 90

minutes (5400 s). The RSRB benchmarks have 8 different problems of varying size,

while the CSCB benchmarks have 16 different problems of varying size (of which,

following Chen et al. [35], we only consider the first 8).

For each instance, we compare the following solution approaches (all code is pro-

vided on Github [48]):

1. Our own implementation of the location-based heuristic of Braca et al. [25]

(with the constraint that all buses for a given school arrive at the same time),

with a number of buses denoted as 𝑍LBH.

2. The BiRD algorithm with eight scenarios for each school (using eight different

values of 𝜆: 102, 5 · 102, 5 · 103, 104, 5 · 104, 105, 5 · 105, 106 – note: for one

instance, we compute fourteen scenarios for each school). We then perform the

scenario selection and bus scheduling steps with the overall number of buses as

the only objective. We denote this number of buses as 𝑍BiRD.

3. The BiRD algorithm with only one scenario for each school (using 𝜆 = ∞,

i.e. effectively minimizing the number of buses for each school). We write this

number of buses 𝑍∞.

160



N
um

be
r

of
bu

se
s

Im
pr

ov
em

en
t

In
st

an
ce

M
R
T

(s
)

𝑁
sc

h
𝑁

st
op

s
𝑁

st
ud

𝑍
L
B

H
𝑍

∞
𝑍

C
he

n
𝑍

B
iR

D
𝑍

H
yb

B
iR

D
H

yb
ri

d

R
SR

B
01

27
00

6
25

0
34

09
38

31
31

31
31

0%
0%

R
SR

B
02

27
00

12
25

0
36

70
34

31
30

30
29

0%
3%

R
SR

B
03

27
00

12
50

0
67

94
64

56
56

55
55

2%
2%

R
SR

B
04

27
00

25
50

0
68

05
77

63
62

63
62

-2
%

0%
R

SR
B

05
27

00
25

10
00

13
,7

65
12

3
10

1
10

5
10

0
10

0
5%

5%
R

SR
B

06
27

00
50

10
00

12
,2

01
12

0
10

4
10

6
10

4
10

3
2%

3%
R

SR
B

07
27

00
50

20
00

26
,9

12
20

5
17

3
17

3
16

4
16

1
5%

7%
R

SR
B

08
27

00
10

0
20

00
31

,9
39

22
0

18
1

18
8

17
5

17
3

7%
8%

C
SC

B
01

27
00

6
25

0
39

07
39

33
34

33
33

3%
3%

C
SC

B
02

27
00

12
25

0
32

04
43

37
37

37
37

0%
0%

C
SC

B
03

27
00

12
50

0
68

13
73

67
66

65
64

2%
3%

C
SC

B
04

27
00

25
50

0
75

41
81

70
73

69
69

5%
5%

C
SC

B
05

27
00

25
10

00
16

,9
96

15
8

14
6

14
6

14
3

14
3

2%
2%

C
SC

B
06

27
00

50
10

00
18

,2
32

16
2

14
1

14
5

14
1

14
0

3%
3%

C
SC

B
07

27
00

50
20

00
27

,5
94

24
0

21
8

22
3

20
6

20
6

8%
8%

C
SC

B
08

27
00

10
0

20
00

27
,9

45
23

4
19

2
19

5
18

8
18

6
4%

5%

Av
er

ag
e

27
00

11
9.

4
10

2.
8

10
4.

4
10

0.
2

99
.4

3%
4%

Ta
bl

e
4.

1:
C

om
pa

ri
so

n
of

B
iR

D
w

it
h

ex
is

ti
ng

m
et

ho
ds

on
fir

st
se

t
of

sy
nt

he
ti

c
be

nc
hm

ar
ks

.

161



N
um

ber
ofbuses

Im
provem

ent
Instance

M
R
T

(s)
𝑁

sch
𝑁

stops
𝑁

stud
𝑍

L
B

H
𝑍

∞
𝑍

C
hen

𝑍
B

iR
D

𝑍
H

yb
B

iR
D

H
ybrid

R
SR

B
01

5400
6

250
3409

33
31

31
31

31
0%

0%
R

SR
B

02
5400

12
250

3670
33

27
27

26
26

4%
4%

R
SR

B
03

5400
12

500
6794

52
52

50
50

50
0%

0%
R

SR
B

04
5400

25
500

6805
55

52
50

50
49

0%
2%

R
SR

B
05

5400
25

1000
13,765

95
93

93
91

91
2%

2%
R

SR
B

06
5400

50
1000

12,201
93

82
86

76
76

12%
12%

R
SR

B
07

5400
50

2000
26,912

162
162

166
152

151
6%

7%
R

SR
B

08
5400

100
2000

31,939
186

167
174

154
152

11%
13%

C
SC

B
01

5400
6

250
3907

31
31

32
30

30
3%

3%
C

SC
B

02
5400

12
250

3204
29

29
29

28
28

3%
3%

C
SC

B
03

5400
12

500
6813

61
56

52
51

51
2%

2%
C

SC
B

04
5400

25
500

7541
57

52
51

48
48

6%
6%

C
SC

B
05

5400
25

1000
16,996

131
127

128
121

121
5%

5%
C

SC
B

06
5400

50
1000

18,232
127

122
124

116
114

6%
8%

C
SC

B
07

5400
50

2000
27,594

181
178

170
163

162
4%

5%
C

SC
B

08
5400

100
2000

27,945
174

155
149

140
136

6%
9%

Average
5400

93.8
88.5

88.3
82.9

82.3
4%

5%

Table
4.2:

C
om

parison
ofB

iR
D

w
ith

existing
m

ethods
on

second
set

ofsynthetic
data

benchm
arks.

162



4. Our own partial re-implementation of the method from Chen et al. [35]. More

specifically, we use the single-school routes computed by Chen et al. and pub-

lished along with their paper. We then solve the bus scheduling problem with

the previously-discussed constraint that all buses for a particular school arrive

at the school at the same time, to ensure consistency with the other methods.

We denote this number of buses as 𝑍Chen.

5. A hybrid BiRD method where we add the routes from Chen et al. [35] to

the eight scenarios for each school computed in approach number 2 above, and

perform the scenario selection and bus scheduling steps with the resulting nine

solutions for each school. We denote the number of buses obtained by this

method as 𝑍Hyb. Note that the solutions computed by methods 2 and 4 are

both feasible in this setting, meaning that 𝑍Hyb is guaranteed to be no worse

than 𝑍Chen and 𝑍BiRD.

Results are presented in Tables 4.1 and 4.2, and can be replicated using our Julia

package released on Github [48], which includes code for all the methods described

above. We notice that BiRD with several scenarios matches or improves upon the

best of LBH and Chen et al.’s combination of simulated annealing and CPLEX in all

but one instance, with an average improvement of about 4%.

The results also suggest that BiRD’s modularity allows it to benefit from the

advantages of other methods. When the routes computed by Chen et al.’s method

are considered in addition to other scenarios, our method outperforms Chen et al.’s

by 5% on average. The idea of using multiple scenarios allows BiRD to leverage

the strengths of other methods. Indeed, it seems that most of BiRD’s improvement

comes from the central idea of multiple scenarios for each school. Indeed, BiRD with

a single scenario per school gives comparable results to Chen et al.’s method. This is

to be expected: both methods aim to minimize the number of buses for each school

before solving the bus scheduling subproblem using mixed-integer optimization. The

only difference is that our single-school solutions are computed with the mixed-integer

optimization-based heuristic described earlier, while Chen et al.’s are computed using

163



local search and simulated annealing.

The benchmark data sets from Park, Tae and Kim [110] are useful because they

have been used by several authors to compare their methods. However, there are

only a few such benchmarks, and they do not necessarily reflect a wide range of

potential school districts (for example, schools can start as early as 5AM and as

late as 10AM, which corresponds to a much larger spread than in most US school

districts including Boston). More generally, the school bus routing literature suffers

from a lack of benchmark instances that can be used to compare different solution

approaches. Therefore, another contribution of this work is the publication of open-

source code that can generate and visualize synthetic examples as described in the

previous section, to be used in future work on the school bus routing problem.

We can use these new synthetic examples to further study the performance of our

method. In particular, we are interested in studying cases where the number of schools

and the number of stops per school are both large. We consider 20 synthetically

generated instances with varying parameters, described in Table 4.3. We compare

solution approaches 1, 2 and 3 above.

The results, shown in Table 4.3, suggest that the BiRD algorithm with multiple

scenarios per school significantly outperforms competing methods on large-scale in-

stances, with a number of buses that is 12% lower, on average, than the next best

solution. We notice also that in these instances, minimizing the number of buses for

each school performs quite poorly (worse than LBH), because it makes bus re-use

extremely difficult. Code to reproduce the results from Table 4.3 is also provided in

our Github repository [48].

Since BiRD is a heuristic, it provides no guarantees as to the optimality of the

solution. Furthermore, the question of finding lower bounds for the school bus routing

problem has received very little attention and remains very much open. To our knowl-

edge, only Park, Tae and Kim [110] have made a serious attempt at finding a lower

bound, and they themselves concede that much improvement is still needed. Because

solving the school bus routing algorithm exactly is intractable for large instances,

and good lower bounds do not really exist, quantifying the effect of the problem

164



Number of buses
Instance 𝑁sch 𝑁stops 𝑁stud 𝑍LBH 𝑍∞ 𝑍BiRD Improvement

1 50 3544 5000 117 128 104 11%
2 100 7785 10,000 229 246 195 15%
3 150 12,248 15,000 327 365 283 14%
4 200 16,875 20,000 438 465 385 12%
5 50 3683 5000 111 129 106 5%
6 100 7969 10,000 228 251 196 14%
7 150 12,492 15,000 330 366 281 15%
8 200 17,155 20,000 436 470 388 11%
9 50 3808 5000 113 130 105 7%
10 100 8,156 10,000 234 249 199 15%
11 150 12,729 15,000 334 363 286 14%
12 200 17,430 20,000 442 478 384 13%
13 50 3924 5000 115 129 107 7%
14 100 8336 10,000 236 251 202 14%
15 150 12,967 15,000 331 361 284 14%
16 200 17,699 20,000 447 479 383 14%
17 50 4042 5000 118 133 107 9%
18 100 8503 10,000 236 248 202 14%
19 150 13,184 15,000 335 366 286 15%
20 200 17,942 20,000 443 470 391 12%

Average 280.0 303.9 243.7 12%

Table 4.3: Comparison of BiRD with other methods on large-scale synthetic data
benchmarks.

165



decomposition on the optimality of the final solution remains an open question.

4.6 Technical Details: Bell Time Selection

In this section, we present the details of our mathematical formulation for the School

Time Selection Problem (STSP) and describe our synthetic experiments.

4.6.1 Transportation Costs

Given the complexity of the school bus routing problem when school start times

are fixed, jointly optimizing bus routes and bell times is clearly a very intractable

problem, which grows exponentially in size with the number of schools. The key idea

of our approach is thus to find a reasonable proxy for the transportation cost of any

start time assignment. We choose to define pairwise routing costs 𝑐routing
𝑆,𝑡,𝑆′,𝑡′ in a bid to

balance tractability with expressivity (pairwise costs allow us to capture interaction

between pairs of schools).

The main intuition behind the routing costs 𝑐routing
𝑆,𝑡,𝑆′,𝑡′ is the fact that costs are lower

if individual buses can serve as many trips as possible. Therefore, the main factor in

reducing the number of buses is the “compatibility” of groups of trips, i.e. how easy

it is for a single bus to serve a certain set of trips without wasting time waiting or

driving without passengers. Given two trips 𝑅 and 𝑅′, let ∆𝑡 be the time between

the end of 𝑅 and the beginning of 𝑅′. We define a piecewise linear compatibility cost

𝑐𝑅,𝑅′ that is low if it is profitable for a bus to serve the two trips sequentially. More

precisely:

∙ 𝑐𝑅,𝑅′ = 0 if it is impossible for a bus to serve the two trips successively

∙ 𝑐𝑅,𝑅′ = 0 if ∆𝑡 ≥ 𝑇 with 𝑇 a compatibility parameter that defines the maximal

time a bus can drive between two trips for them to be “compatible”.

∙ 𝑐𝑅,𝑅′ = −𝑇−Δ𝑡
𝑇

otherwise, i.e. the cost is −1 when ∆𝑡 = 0 and 𝑅′ can be served

immediately after 𝑅 and then increases linearly to 0 as ∆𝑡 increases to 𝑇 .

166



For each school and each year for which we enrollment data is available, we com-

pute a set of varied bus routing scenarios as described earlier. The scenarios are

selected so that they are likely to be used in the optimal school bus routing solution.

For each school, we therefore obtain a list of scenarios that is the union of all the

scenarios obtained from each year of data. Then, for two schools 𝑆 and 𝑆 ′, we can

define a compatibility cost 𝑐𝑐𝑜𝑚𝑝𝑎𝑡
𝑆,𝑡,𝑆′,𝑡′ that is the sum of the compatibility costs 𝑐𝑅,𝑅′ and

𝑐𝑅′,𝑅 for every trip 𝑅 in every routing scenario for school 𝑆 and every trip 𝑅′ in every

routing scenario for school 𝑆 ′ when the schools bell times are respectively 𝑡 and 𝑡′.

Our experiments show that the costs 𝑐𝑐𝑜𝑚𝑝𝑎𝑡 are good approximation of how the

choice of bell time allows the routes of different schools to be “compatible” across the

years. Choosing bell times that maximize this compatibility indirectly minimizes the

future transportation costs incurred by the district. It turns out that maximizing the

compatibility of different routes as described has the unwanted tendency to lead to

a reduced number of schools with early and late start times, which has a negative

impact on the number of buses in the solution. This is a consequence of using a simple

pairwise affinity cost that only takes into account groups of two schools. In practice,

we can counteract this adversarial effect by adding a cost that encourages bell times

to be spread out over all allowed values: 𝑐𝑠𝑝𝑟𝑒𝑎𝑑𝑆,𝑡,𝑆′,𝑡′ = −|𝑡− 𝑡′|. The final transportation

costs are therefore defined as 𝑐routing = 𝑐𝑐𝑜𝑚𝑝𝑎𝑡(𝑇 ) + 𝛾𝑐𝑠𝑝𝑟𝑒𝑎𝑑 where 𝑇 and 𝛾 are the

two parameters that depend on fundamental characteristics of the school district, and

can be found using cross-validation. Ultimately, the transportation costs do not need

to be perfect: year-to-year enrollment changes mean that directional information is

more than enough in practice.

Given the routing costs defined above, and temporarily ignoring all other objec-

tives, the STSP can be formulated as a Generalized Quadratic Assignment Problem

167



(GQAP), for example using integer optimization:

min
∑︁
𝑆∈𝒮

∑︁
𝑡∈T𝑆

∑︁
𝑆′∈𝒮

∑︁
𝑡′∈T𝑆′

𝑐routing
𝑆,𝑡,𝑆′,𝑡′𝑧𝑆,𝑡,𝑆′,𝑡′ (4.5a)

s.t.
∑︁
𝑡∈T𝑆

𝑎𝑆,𝑡 = 1 ∀𝑆 ∈ 𝒮 (4.5b)

𝑧𝑆,𝑡,𝑆′,𝑡′ ≥ 𝑎𝑆,𝑡 + 𝑎𝑆′,𝑡′ − 1 ∀𝑆 ∈ 𝒮, 𝑡 ∈ T𝑆, 𝑆
′ ∈ 𝒮, 𝑡′ ∈ T𝑆′ (4.5c)

𝑧𝑆,𝑡,𝑆′,𝑡′ ≤ 𝑎𝑆,𝑡 ∀𝑆 ∈ 𝒮, 𝑡 ∈ T𝑆, 𝑆
′ ∈ 𝒮, 𝑡′ ∈ T𝑆′ (4.5d)

𝑧𝑆,𝑡,𝑆′,𝑡′ ≤ 𝑎𝑆′,𝑡′ ∀𝑆 ∈ 𝒮, 𝑡 ∈ T𝑆, 𝑆
′ ∈ 𝒮, 𝑡′ ∈ T𝑆′ (4.5e)

𝑧𝑆,𝑡,𝑆′,𝑡′ ∈ {0, 1} ∀𝑆 ∈ 𝒮, 𝑡 ∈ T𝑆, 𝑆
′ ∈ 𝒮, 𝑡′ ∈ T𝑆′ (4.5f)

𝑎𝑆,𝑡 ∈ {0, 1} ∀𝑆 ∈ 𝒮, 𝑡 ∈ T𝑆. (4.5g)

(4.5h)

In the formulation above, the key decision variable 𝑎𝑆,𝑡 is 1 when school 𝑆 is

assigned time 𝑡, and 0 otherwise. Similarly, the decision variable 𝑧𝑆,𝑡,𝑆′,𝑡′ is 1 when

schools 𝑆 and 𝑆 ′ are respectively assigned times 𝑡 and 𝑡′, and 0 otherwise. The set

T𝑆 designates all bell times that are allowed for school 𝑆 (this is a discrete, finite set,

e.g. every 10 minutes between 7:30AM and 9:30AM). Constraint (4.5b) enforces that

each school is assigned exactly one time, while constraints (4.5c), (4.5d) and (4.5e)

enforce the relationship between the single and pairwise decision variables 𝑎𝑆,𝑡 and

𝑧𝑆,𝑡,𝑆′,𝑡′ . A similar formulation is proposed in [138].

4.6.2 Bell Time Optimization on Synthetic Data

We have formulated the STSP as a GQAP, and we solve it using a simple local im-

provement heuristic, which randomly selects a smaller subset of schools and optimizes

their start times, keeping the bell times of all other schools fixed. Given an initial

bell time assignment {𝑡0𝑆}𝑆∈𝒮 , and having selected a subset 𝒮1 ⊆ 𝒮, it turns out that

the problem of finding the optimal start times for this subset is still a GQAP. We can

formulate this GQAP as an integer program as above, solve it using a commercial

solver such as Gurobi, and iterate until a stopping criterion is met.

168



We now turn to synthetic data to examine the effect of the parameters of the local

improvement heuristic, namely the size of the subset and the number of iterations.

The first tradeoff we explore is the size of the optimized subset. Clearly, as the number

of schools in the optimized subset increases, the local improvement heuristic will find

better solutions, but each iteration will take more time. To understand this tradeoff,

we run 100 randomly-generated experiments with 100 schools. For each one, we first

select a random starting point (leftmost column), then we perform 1024 iterations

one school at a time, followed by 512 iterations two schools at a time, etc. Each time,

we double the number of schools in the optimized subset and halve the number of

iterations, so that in expectation each school features in the optimized subset the same

number of times. We show results in Fig. 4-10a. We notice that compared to a random

solution, optimizing one school at a time already drastically improves the quality of

the solution, and subsequently increasing the size of the optimized subset does not

have a strong effect on the quality of the solution. In addition, using random restarts,

i.e. running the experiment several times with different random starting points and

keeping the best one, has a very significant effect on the optimization gap. In fact, it

seems that using several random restarts has a much stronger effect on the solution

quality than increasing the number of schools that are optimized at each iteration.

To model transportation costs, we introduced costs 𝑐routing = 𝑐𝑐𝑜𝑚𝑝𝑎𝑡(𝑇 ) +𝛾𝑐𝑠𝑝𝑟𝑒𝑎𝑑.

We claim that the optimal bell time assignment given these costs indeed induces

a routing solution with a small number of buses. We support this claim with the

experiments described in the Fig. 4-3. We present another set of experiments here

which also support the same point. We consider a problem instance with 100 schools,

where the only objective is to minimize transportation costs, and the allowed bell

times either follow 3 “tiers” (7:30, 8:30, 9:30) or encompass all 15-minute intervals

between 7:15 and 9:30. We compare three optimization strategies. The first (“ran-

dom”) assigns each school a bell time uniformly at random across the universe of

possibilities (possibly with some random restarts to improve solution quality). The

second (“balanced”) simply tries to balance the number of routes into evenly spaced

tiers, with a parameter controlling the spacing between the tiers which we can choose

169



random 1 school 2 schools 4 schools 8 schools 16 schools 32 schools
optimization steps

10%

20%

30%

40%

50%

op
tim

iza
tio

n 
ga

p

no restart
restarts (10)

(a) Effect of subset size on quality of solution
found by optimization-based heuristic, aver-
aged over 100 synthetic experiments. As the
subset size increases, the optimization gap
decreases. In addition, random restarts have
a stronger effect on the solution quality than
increasing the size of the optimized subset.

random (1) random (4) random (50) opt. balanced opt. connected
belltime choice process

0

50

100

150

av
er

ag
e 

nu
m

be
r o

f b
us

es

3 tiers
all bell times

(b) Comparison of different routing cost ap-
proximations for bell time optimization. Two
settings are considered: three bell time tiers,
i.e., schools may only start at 7:30, 8:30 or
9:30, and all bell times, when every 5-minute
interval between 7:15 and 9:30 is allowed.
The random assignment strategy performs
well when there are only three allowed bell
times, but poorly when all bell times be-
tween 7:15 and 9:30 are allowed. Approxi-
mating routing costs using the routing com-
patibility costs described in the section 4.6.1
on Transportation Costs (“connected” exper-
iment) gives better results in all cases than
simply making sure the number of routes is
balanced across tiers without regard for the
actual compatibility of these routes.

Figure 4-10: Results of bell time optimization algorithm on synthetic data.

170



by cross-validation. The third (“connected”) is the one described in the Section 4.6.1

“Transportation Costs”.

The results averaged over 100 random instances, which can be seen in Fig. 4-

10b, show that our optimization strategy consistently and significantly outperforms

the other two in both experimental settings. We notice that the random assignment

strategy works quite well in the case when only three bell times are allowed, even

better than the strategy that tries to balance routes into evenly spaced tiers. However,

the random strategy is not able to make use of the additional allowed bell times in

the second set of experiments, while both optimization strategies achieve significant

improvements when the number of allowed bell times for each school increases.

4.6.3 GQAP-Representable Objectives

As discussed in the “Bell Times in Practice” section 4.3, the start time assignment

problem typically involves many objectives beyond the simple optimization of trans-

portation costs. We present many such objectives here, and show how they can be

integrated within the GQAP framework.

Many real-world objectives can be represented using single affinity costs 𝑐𝑆,𝑡. Here

are a few of the possibilities we explored in collaboration with BPS:

∙ Limiting change from the current bell times can be achieved by setting 𝑐𝑆,𝑡 to

a positive value when 𝑡 is different from the current time 𝑡current for school 𝑆.

The specific value can exhibit any functional dependence on 𝑡 and 𝑡current.

∙ Incorporating individual school preferences. Districts can easily quantify the

preferences of various stakeholders at a particular school, from teachers and staff

to parents and students, using surveys, focus groups, etc. These preferences can

then easily be converted into aversion costs 𝑐𝑆,𝑡.

∙ Favoring a particular school. Sometimes, a district may wish to prioritize the

needs of a particular set of schools 𝒮0 ⊆ 𝒮, in order to bolster academic achieve-

ments, support economically disadvantaged students, or provide a more aus-

picious environment for students with special needs. This objective can be

171



achieved by penalizing less desirable times more for 𝑆 ∈ 𝒮0 than for 𝑆 /∈ 𝒮0.

For example, in Boston, we optimized a preference score for schools with a

high number of special education students (weighted by the number of these

students).

∙ Promoting later high school start times/earlier elementary school end times can

be achieved by penalizing undesirable times for each school with a high cost.

∙ Interfacing with after-school programs/school-specific constraints. If a school

must end before a certain time to leave time for a specific extracurricular activ-

ity, or to alleviate traffic congestion in the city, it is straightforward to compute

the cost of such undesirable times and consider this as an objective.

Also allowing pairwise affinity costs 𝑐𝑆,𝑡,𝑆′,𝑡′ increases modeling power by allowing

the representation of more complicated real-world objectives:

∙ Allowing school partnerships. Groups of schools often partner to offer joint

extracurriculars or athletic competitions. Schools can also share all or part

of their transportation. Partner schools may therefore require compatible bell

times, i.e. bell times that are within a particular interval.

∙ Considering externalities. School districts may wish to separate the start and/or

end time of some pairs of schools to prevent fights between rival students or

reduce the strain on public transportation.

∙ Ensuring equity. Single costs allow a school district to model average school

satisfaction, while pairwise affinity costs also allow it to model the variance in

satisfaction across neighborhoods, communities, or the entire district. Consider

two sets of schools 𝒮1,𝒮2 ⊆ 𝒮, and let 𝜇
(𝑖)
𝑆 be 1/|𝒮𝑖| if 𝑆 ∈ 𝒮𝑖 and 0 otherwise.

Consider a metric which assigns cost 𝑐𝑆,𝑡 to bell time 𝑡 for school 𝑆. Then the

squared difference 𝛿𝒮1,𝒮2(t) of the mean of 𝑐 between the two considered subsets

172



can be written as

𝛿𝒮1,𝒮2(t) =

(︃∑︁
𝑆∈𝒮

𝜇
(1)
𝑆 𝑐𝑆,𝑡𝑆 −

∑︁
𝑆∈𝒮

𝜇
(2)
𝑆 𝑐𝑆,𝑡𝑆

)︃2

=

(︃∑︁
𝑆∈𝒮

(︁
𝜇
(1)
𝑆 − 𝜇

(2)
𝑆

)︁
𝑐𝑆,𝑡𝑆

)︃2

(4.6a)

=
∑︁
𝑆∈𝒮

(︁
𝜇
(1)
𝑆 − 𝜇

(2)
𝑆

)︁2
𝑐2𝑆,𝑡𝑆 +

∑︁
𝑆∈𝒮

∑︁
𝑆′∈𝒮,𝑆′ ̸=𝑆

(︁
𝜇
(1)
𝑆 − 𝜇

(2)
𝑆

)︁(︁
𝜇
(1)
𝑆′ − 𝜇

(2)
𝑆′

)︁
𝑐𝑆,𝑡𝑆𝑐𝑆′,𝑡𝑆′ .

(4.6b)

The above objective is GQAP-representable, if we define single affinity costs

𝑐𝑆,𝑡 =
(︁
𝜇
(1)
𝑆 − 𝜇

(2)
𝑆

)︁2
𝑐2𝑆,𝑡 and pairwise affinity costs:

𝑐𝑆,𝑡,𝑆′,𝑡′ =
(︁
𝜇
(1)
𝑆 − 𝜇

(2)
𝑆

)︁(︁
𝜇
(1)
𝑆′ − 𝜇

(2)
𝑆′

)︁
𝑐𝑆,𝑡𝑆𝑐𝑆′,𝑡𝑆′

And this property generalizes to arbitrary weights 𝜇, allowing districts to ensure

equity across all communities and populations in a district.

We note that pairwise affinity costs are more general than single affinity costs since

optimizing any single affinity cost 𝑐𝑆,𝑡 is equivalent to optimizing the corresponding

pairwise affinity cost 𝑐𝑆,𝑡,𝑆′,𝑡′ , which equals 𝑐𝑆,𝑡 when 𝑆 = 𝑆 ′ and 𝑡 = 𝑡′, and 0

otherwise. For ease of notation, we choose to represent all single costs in this manner.

Our complete approach to the STSP is thus a multi-objective formulation. Specif-

ically, given a set of GQAP-representable objectives {𝑐𝛼}𝛼=𝐴
𝛼=1 (one of which could be

the routing costs 𝑐routing and corresponding priority weights 𝜂𝛼 (both of which are

determined by the school district), we replace the routing-only objective (4.5a) with

the weighted sum of all of the district’s objectives:

min
∑︁
𝑆∈𝒮

∑︁
𝑡∈T𝑆

∑︁
𝑆′∈𝒮

∑︁
𝑡′∈T𝑆′

𝛼=𝐴∑︁
𝛼=1

𝜂𝛼𝑐
𝛼
𝑆,𝑡,𝑆′,𝑡′𝑧𝑆,𝑡,𝑆′,𝑡′ . (4.7)

Policymakers are free to vary the priority weights 𝜂𝛼 to explore tradeoffs between

competing objectives.

173



4.6.4 Boston Community Survey

A typical example of a real-world objective that school districts must take into account

is community satisfaction. We describe the data collected by BPS to understand the

preferences of parents, teachers and staff.

When BPS began exploring the idea of bell time adjustment in the fall of 2016,

they launched a community survey in order to understand the preferences of various

stakeholders, including parents, teachers and staff. The survey included both an

online and phone component. Parents and school staff were asked to score all bell

times between 7:00 and 9:30 (every 15 minutes) between 1 (worst) and 7 (best).

To reduce noise in the survey (e.g some parents rate all bell times as 1 or 2 while

other parents rate all bell times as 6 or 7), we normalize these scores so that (a) they

lie between 0 and 1, and (b) for any respondent, their favorite bell time is rated a 1

and their least favorite a 0. Then the preference score (or survey score) of a particular

bell time assignment is the average (weighted by enrollment) of the preference scores

of each school for their assigned bell time, where the preference score for a school 𝑆

at a given bell time 𝑡 is the average of the normalized preferences of all school 𝑆’s

parents and staff for bell time 𝑡, where parent preferences carry twice as much weight

as staff preferences (the ratio was decided by BPS). To handle schools with too few

responses, we add three “dummy parents” to all schools’ responses, with preferences

equal to the average of all parent preferences across the entire survey. The results in

Fig. 5 and Table 1 rely on this community survey.

The main insight provided by the survey was the general disagreement of parents

within each school. BPS realized that optimizing the average preference score was

not very meaningful because every bell time would have both supporters and critics

at every school. Therefore, they moved towards optimizing broader objectives (e.g.

moving high schools later) rather than optimizing this particular preference score.

Because of the survey’s low response rate in some schools, it did not provide

conclusive answers to all of BPS’s questions. For instance, it is not clear whether

households of different income levels have different preferences for the start times of

174



their younger children due to different work schedules.

4.7 Conclusion

Spreading start times allows school districts to reduce transportation costs by reusing

buses between schools. However, assigning each school a time involves both estimating

the impact on transportation costs and reconciling additional competing objectives.

These challenges force many school districts to make myopic decisions, leading to an

expensive and inequitable status quo. For instance, most American teenagers start

school before 8:00 AM, despite evidence of significant associated health issues. We

proposed an algorithm to jointly solve the school bus routing and bell time selection

problems. Our application in Boston led to $5 million in yearly savings (maintaining

service quality despite a 50-bus fleet reduction) and to the unanimous approval of the

first school start time reform in 30 years. The tools we develop can be useful to school

districts, to reduce overhead operational costs and invest directly into students, in a

way that fits the priorities and needs of the community.

175



176



Chapter 5

The Benefits of the Stochastic

Proximal Point Algorithm

5.1 Introduction

We consider the following convex stochastic optimization problem:

min
𝑥∈𝒳

𝐹 (𝑥) = E𝑆 [𝑓(𝑥, 𝑆)] , (5.1)

where 𝒳 ⊂ R𝑑 is a closed convex set, 𝑆 is a random variable, and 𝑓(., 𝑆) are

closed convex functions for each value 𝑆. These problems have many applications

in statistical learning [72, 149], but also stochastic optimization and simulation. In

the context of machine learning, 𝑓(𝑥, 𝑆) can model the loss function of a model

parametrized by 𝑥 with respect to a data-point 𝑆, uniformly sampled from a data-set.

In this setting (5.1) is equivalent to minimizing the averaged loss over the data-set.

For example, an ordinary least square problem (OLS) would correspond to

𝑓(𝛽, 𝑆) = (𝑋 ′
𝑆𝛽 − 𝑦𝑆)

2

, where 𝑋𝑆 and 𝑦𝑆 represent the feature and label of a uniformly sampled data-point.

We do not assume knowledge of the distribution of 𝑆. Instead, we consider the

177



case where we have the possibility to draw independent random samples of 𝑆 and use

them iteratively to solve (5.1). Lately, the large amounts of data that are available

for machine learning applications make this stochastic setting particularly relevant

for large-scale learning [24].

In the unconstrained case (𝒳 = R𝑑), the de facto algorithms for solving (5.1)

are the stochastic (sub)gradient methods [24, 98, 115, 100], first introduced by [119]

for smooth problems. Starting from a solution 𝑥0, each iteration 𝑘 ≥ 1 draws an

independent sample 𝑆𝑘 ∼ 𝑆 and updates the previous solution using a sub-gradient

step of size 𝜇𝑘 ≥ 0 on 𝑓(., 𝑆𝑘):

𝑥𝑘 = 𝑥𝑘−1 − 𝜇𝑘𝑔𝑘 where 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘−1, 𝑆𝑘). (5.2)

These methods have guarantees of convergence (see [100] for the last iterate and

[115] for the averaged sequence) under an appropriate choice of step schedule [𝜇𝑘] =

(𝜇1, 𝜇2, · · · ) ∈ RN. It has been used successfully in large-scale stochastic optimiza-

tion [24, 149]. But the choice of step schedule can be challenging [98], and strong

assumptions are needed to guarantee convergence.

Interestingly, the sub-gradient step is also the minimizer of the following optimiza-

tion problem:

𝑥𝑘 = argmin𝑥 (𝑓(𝑥𝑘−1, 𝑆𝑘) + 𝑔′𝑘(𝑥− 𝑥𝑘−1)) +
1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2

with 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘−1, 𝑆𝑘).

(5.3)

The term in parenthesis is a first order approximation of 𝑓(., 𝑆) around 𝑥𝑘−1. If we

replace the approximation with the function itself, we get the stochastic proximal

point algorithm [121, 21, 132, 3, 112]:

𝑥𝑘 = argmin𝑥∈𝒳 𝑓(𝑥, 𝑆) +
1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2. (5.4)

This algorithm is derived from its deterministic counterpart, the proximal point al-

gorithm [120], an optimization algorithm associated with an appealing theoretical

178



framework and strong guarantees of convergence [108]. More broadly, proximal algo-

rithms have encountered a lot of success in large-scale and distributed optimization

[108], in particular with the successful use of the proximal gradient method [6, 108].

A disadvantage of the proximal operator (5.4) is its computational challenges.

Indeed, computing a proximal point update requires to solve a convex optimization

problem, which can be much harder than computing a gradient [108].

Nonetheless, a typical way to increase the tractability of stochastic optimization

algorithms is to use distributed computing. Mini-batching can be used for this pur-

pose [40, 47]. Instead of drawing samples of 𝑆 one by one, we can instead sample 𝑛 of

them simultaneously: [𝑆𝑛] = (𝑆1, · · · , 𝑆𝑛). We then replace 𝑓(., 𝑆) in (5.2) and (5.4)

by its empirical expectation:

𝑓𝑛(𝑥, [𝑆𝑛]) =
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑥, 𝑆𝑖)

Using mini-batching can lead to tractability gains. For example, mini-batching is stan-

dard in large-scale learning and neural-networks training. Leveraging mini-batching

to make the stochastic proximal steps more efficient is a focus of this work.

5.1.1 Existing Work on Stochastic Proximal Point Methods

Although stochastic gradient methods are widely used and studied [119, 98, 115, 100],

their shortcomings are also well known. THey require strong assumptions to guaran-

tee appropriate convergence [98] (typically bounded or Lipschitz-gradients). They can

also exhibit instability with respect to the choice of step schedule. Indeed, even when

choosing a step schedule and problem that verify the conditions for convergence, [98]

recently showed that stochastic gradient steps can experience a phase of exponential

divergence before convergence. Given a step schedule 𝜇𝑘 = 𝜇0

𝑘
, too small choices of 𝜇0

(even slightly) lead to lower asymptotical rate of convergence, whereas higher values

can lead to a non-asymptotical exponential divergence.

The stochastic proximal point methods have been analysed fairly recently, and

present a good alternative to these shortcomings. [12] was to the best of our knowl-

179



edge the first paper to have introduced the stochastic proximal point algorithm in

2011, albeit in an incremental context (finite number of samples, not necessarily

drawn randomly). Since then, the focus of this literature has been on convergence

and stability of the algorithm. Stochastic proximal point methods indeed share the

asymptotic guarantees of their stochastic gradient counterparts without requiring

bounded or Lipschitz gradients [3, 112]. They are also more stable with respect to

the choice of step schedule and do not have the exponential transient behavior of

stochastic gradient methods [3, 121]. Additionally, they are also particularly efficient

on “noiseless” or “easy” problems, where the minimizers of 𝐹 also minimize 𝑓(., 𝑆) for

each 𝑆, for which [3, 121] prove linear convergence.

[121] provides the first comparison study of the stability of stochastic gradient and

proximal point steps, as well as asymptotical results, using ideas from monotone oper-

ator theory.[21] looks at a broader theoretical setting. [132] uses averaging, asymptotic

and non-asymptotic analysis. [112] also provides an analysis of stochastic proximal

point methods, in the case where the feasibility set is also defined in a stochastic

setting, as the intersection of random sets 𝒳𝑆, that is 𝒳 = ∩𝑆∈Ω𝒳𝑆 where (Ω,P) is

a probability space associated with 𝑆. [3] builds on the previous literature to gen-

eralize both the stochastic proximal and gradient methods in their aProx framework

of model-based methods. Their theoretical work explores the conditions of stability

and asymptotic convergence within this framework, and provides non-asymptotical

bounds for the proximal steps. They also conduct an experimental study, including

the case of least square problems, of the stability of various algorithms of their general

class.

This literature suggests that a reason to use stochastic proximal point methods is

their stability with respect to the choice of step schedule. But if the step schedules are

chosen adequately ([24] discusses a practical way of choosing step sizes in large-scale

learning), the advantages of stochastic proximal steps are not as obvious, at least

given the existing non-asymptotical bounds. This is particularly problematic given

the tractability challenges associated with the computation of the proximal operator

[108], that are, to the best of our knowledge, not been addressed in the existing work

180



on stochastic proximal point methods. And in many settings, computational time is

extremely important. For example, [24] explains that given a limited computational

time, faster iterations results in more samples being used, which can significantly

outbalance the potential optimization limitations of fast algorithm like stochastic

gradient methods.

5.1.2 Contributions

We take an orthogonal approach to the study of the stochastic proximal point al-

gorithm. This chapter focuses on one question: should we use proximal point steps

in practice? Existing positive answers [3] leverage their greater stability and easier

choice of step schedule. We also show that even with the best possible step schedule

for gradient steps, proximal point steps still have an edge and can be made tractable

at a large-scale.

The existing literature studies asymptotic behavior and general non-asymptotic

bounds. In order to get more precise results, we focus on the particular example of

unconstrained quadratic cost functions to provide a much more precise comparison of

gradient and proximal point steps, although limited to this application. This involves

exploring the little studied influence of computational time, as well as the importance

of mini-batching (or variance reduction).

In Section 5.2, we introduce the notations of our setting of stochastic convex

quadratic optimization problems, as well as the associated optimization algorithms.

In Section 5.3, we focus on the one-dimensional case. This simple example guaran-

tees the existence of an “optimal” step schedule for both proximal point and gradient

steps. Such a step schedule has the interesting property that the expected error at

each step 𝑘 is minimal across all step schedules. Using this step schedule allows us

to compare the non-asymptotic behavior of the algorithms in more details than the

traditional literature, independently from the choice of step schedule. We compute

the expected error of this schedule at each step using recurrence relations, allowing

us to precisely compare them in an extensive theoretical study. In particular, we

discuss how mini-batching (or variance reduction) both makes proximal point steps

181



more efficient and hurts gradient step.

Section 5.4 presents an experimental study in higher dimensions, using the ex-

ample of ordinary least square. Although it becomes harder to define and study an

optimal step schedule, we experimentally confirm the insights obtained in dimension

1. In particular mini-batching still plays an important role.

Finally, Section 5.5 explores the little-studied tractability tradeoff of proximal

point steps. In small dimensions, state-of-the-art linear algebra algorithms and par-

allelization help reduce the complexity disadvantage of proximal point steps. In higher

dimensions, we use an approximately solve the proximal optimization problems with

conjugate gradient to significantly the computational burden of proximal point steps.

This approach allows us to get the best of both worlds and outperform both gradient

and proximal steps. We match the asymptotic computational efficiency of gradient

steps, as well as the stability, the easy choice of step schedule, and the mini-batching

and parallelization benefits of proximal steps.

5.2 Setting

We introduce the notations and algorithms of our optimization setting.

5.2.1 Stochastic Convex Quadratic Optimization

We consider the unconstrained stochastic optimization problem (5.1), in the special

case where 𝑓(., 𝑆) is a convex quadratic for all 𝑆. That is, we have a semi-definite

random matrix 𝐴𝑆 ∈ 𝑆𝑑
+, a random vector 𝑏𝑤 ∈ R𝑑 and a random scalar 𝛾𝑤 ∈ R such

that:

𝑓(𝑥, 𝑆) =
1

2
𝑥′𝐴𝑆𝑥 + 𝑏′𝑆𝑥 + 𝛾𝑆. (5.5)

In particular, if we use the notations 𝐴 := E𝑆[𝐴𝑆], 𝑏̄ := E𝑆[𝑏𝑆], 𝛾 := E𝑆[𝛾𝑆], we

have:

𝐹 (𝑥) =
1

2
𝑥′𝐴𝑥 + 𝑏̄′𝑥 + 𝛾. (5.6)

182



We additionally impose 𝐴 ∈ 𝑆𝑑
++, that is, 𝐴 is positive definite, and (5.6) has a unique

minimizer, 𝑥* = −𝐴−1𝑏̄.

In the case of mini-batching, we have:

𝑓𝑛(𝑥, [𝑆𝑛]) =
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑥, 𝑆𝑖)

=
1

2
𝑥′

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝐴𝑆𝑖

)︃
𝑥 +

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑏𝑆𝑖

)︃′

𝑥 +

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝛾𝑆𝑖

)︃
=

1

2
𝑥′𝐴𝑛𝑥 + 𝑏′𝑛𝑥 + 𝛾𝑛,

(5.7)

where 𝐴𝑛, 𝑏𝑛 and 𝛾𝑛 are the empirical expectations of 𝐴𝑆, 𝑏𝑆 and 𝛾𝑆 from 𝑛 inde-

pendent random draws [𝑆𝑛] of 𝑆 (we leave their dependence on [𝑆𝑛] implicit). Note

this mini-batch setting is equivalent to a problem with 𝑛 = 1 where we redefined the

random variables 𝐴𝑆, 𝑏𝑆 and 𝛾𝑆.

5.2.2 Algorithms

We introduce here the stochastic gradient and proximal point steps om this setting.

To build intuition, these steps are represented on Figure 5-1.

Stochastic Gradient Step Stochastic gradient steps (referred to as “gradient

steps” for simplicity in the rest of the chapter), with a step-size schedule [𝜇𝑘] =

(𝜇1, 𝜇2, · · · ) ∈ RN
+, correspond to the following updates:

∀𝑘 ≥ 1, 𝑥𝑘 = grad(𝑥𝑘−1, 𝜇𝑘)

:=𝑥𝑘−1 − 𝜇𝑘∇𝑓(𝑥𝑘−1, 𝑆
𝑘)

=𝑥𝑘−1 − 𝜇𝑘 (𝐴𝑆𝑘𝑥𝑘−1 + 𝑏𝑆𝑘) ,

(5.8)

where the super-script 𝑘 of the random variables corresponds to the independent

samples at each step 𝑘.

For a general mini-batch size 𝑛, we have:

grad𝑛(𝑥𝑘−1, 𝜇𝑘) := 𝑥𝑘−1 − 𝜇𝑘

(︀
𝐴𝑘

𝑛𝑥𝑘−1 + 𝑏𝑘𝑛
)︀
. (5.9)

183



Figure 5-1: Visualizing proximal steps (orange line), gradient steps (black dashed
line) and sample average approximation (blue cross) on a sampled convex quadratic
function 𝑓(., 𝑆) in 𝑑 = 2. The convex quadratic function is represented in blue, and its
gradient with white arrows. We represent the set of possible steps when varying the
step size 𝜇 from 0 to +∞, starting from (0,−3) (pink triangle). Note that gradient
steps diverge, proximal steps converge to the sample average approximation (SAA)
solution (the minimizer of 𝑓(., 𝑆)) when 𝜇→ +∞ and behaves similarly to a gradient
step when 𝜇→ 0.

184



Stochastic Proximal Point Step A stochastic proximal point step (shortened to

“proximal step” in the rest of the chapter) corresponds to:

∀𝑘 ≥ 1, 𝑥𝑘 = prox(𝑥𝑘−1, 𝜇𝑘)

:= argmin𝑥∈R𝑑 𝑓(𝑥, 𝑆𝑘) +
1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2.
(5.10)

And, for general mini-batch size 𝑛,

prox𝑛(𝑥𝑘−1, 𝜇𝑘) := argmin𝑥∈R𝑑 𝑓𝑛(𝑥, [𝑆𝑘
𝑛]) +

1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2. (5.11)

Computing a proximal step requires to solve an optimization problem, which is

the minimization of a convex quadratic with definite positive Hessian (because of the

regularization term), and therefore has a unique solution:

∇𝑥𝑘

(︂
1

2
𝑥′
𝑘𝐴

𝑘
𝑛𝑥𝑘 + (𝑏𝑘𝑛)′𝑥𝑘 + 𝛾𝑘

𝑛 +
1

2𝜇𝑘

‖𝑥− 𝑥𝑘−1‖2
)︂

= 0 (5.12)

=⇒ 𝐴𝑘
𝑛𝑥𝑘 + 𝑏𝑘𝑛 +

1

𝜇𝑘

(𝑥𝑘 − 𝑥𝑘−1) = 0 (5.13)

=⇒ prox(𝑥𝑘−1, 𝜇𝑘)𝑛 =

(︂
𝐴𝑘

𝑛 +
1

𝜇𝑘

I

)︂−1(︂
−𝑏𝑘𝑛 +

1

𝜇𝑘

𝑥𝑘−1

)︂
(5.14)

Note that the computation of the proximal step requires solving a linear system,

whereas ta matrix-vector multiplication is sufficient for gradient steps.

Sample Average Approximation (SAA) SAA is not an iterative algorithm, but

we will use it as a baseline. SAA does not require a starting point, and just computes

the unique minimizer of 𝑓𝑛(., [𝑆𝑛]) for some mini-batch size 𝑛. In the case where the

minimizer is not unique, SAA is not defined.

SAA(𝑛) = argmin𝑥∈R𝑑𝑓𝑛(𝑥, [𝑆𝑛]) (5.15)

For SAA(𝑛) to be defined, the matrix 𝐴𝑛 needs to be almost surely invertible

185



(positive definite), and we have:

SAA(𝑛) = −𝐴−1
𝑛 𝑏𝑛 (5.16)

When it is defined, SAA(𝑛) corresponds to a proximal step in the limit 𝜇→ +∞

(see Figure 5-1). It is useful to compare 𝑘 proximal or gradient steps with mini-

batches 𝑛 to SAA(𝑛𝑘), as the three algorithms need the same number of samples.

Also note that grad(𝑥𝑘−1, 𝜇𝑘), prox(𝑥𝑘−1, 𝜇𝑘) and SAA(𝑛) are all random functions

as they depend on 𝑆.

5.3 Benefits of Proximal: One Dimension

In this section, we focus on the case 𝑑 = 1. This simple case will allow us to obtain

closed forms of the non-asymptotic behavior of gradient and proximal steps under

optimal step schedule, which enables a precise comparison of the two algorithms.

5.3.1 Setting and Simplifications

Simplications In this setting, we have 𝑓(𝑥, 𝑆) = 1
2
𝑎𝑆𝑥

2 + 𝑏𝑆𝑥 + 𝛾𝑆, and 𝐹 (𝑥) =

1
2
𝑎̄𝑥2 + 𝑏̄𝑥 + 𝛾. We additionally assume (to simplify the analysis) that 𝑎𝑆, 𝑏𝑆 and 𝛾𝑆

are independent random variables. For better readability, we will use 𝑎 := 𝑎𝑆, 𝑏 := 𝑏𝑆

and 𝛾 := 𝛾𝑆. As seen in the previous section, mini-batching is equivalent to replacing

𝑎 and 𝑏 by the random variables 𝑎𝑛 and 𝑏𝑛.

Without loss of generality, we can assume 𝛾 = 0 as the constant terms do not

affect the three optimization algorithm (see (5.8), (5.14), (5.16)). Multiplying the

cost functions by a positive constant does not affect SAA, and can be offset for

proximal and gradient steps by dividing the step sizes by the same constant (see

equations (5.8) and (5.10)). We can therefore divide the cost by 𝑎̄ > 0, and focus

without loss of generality on the case 𝑎̄ = 1. Finally, as the three algorithms are

isometry-invariant, we change the variable space using the translation 𝑥→ 𝑥 + 𝐴−1𝑏̄

which is equivalent to setting 𝑏̄ = 0.

186



Putting everything together, we only need to consider the stochastic optimization

problem (5.1) with:

𝑓(𝑥, 𝑆) =
𝑎

2
𝑥2 + 𝑏𝑥, (5.17)

with 𝑎 and 𝑏 independent random variables such that 𝑎̄ = E [𝑎] = 1 and 𝑏̄ = E [𝑏] = 0.

In expectation, we have

𝐹 (𝑥) =
1

2
𝑥2, (5.18)

which implies 𝑥* = 0. Figure 5-2 illustrates this optimization problem, for various

choices of distributions for 𝑎 and 𝑏. In this setting, 𝑏 represents the gradient error

at the optimal point 𝜕𝑓
𝜕𝑥

(𝑥*, 𝑆) = 𝑏, while 𝑎 is the random curvature of the convex

quadratic, as we have 𝜕2𝑓
𝜕𝑥2 (𝑥, 𝑆) = 𝑎.

Algorithms The gradient step of Equation (5.8) simplifies to

grad(𝑥, 𝜇) = (1− 𝜇𝑎)𝑥− 𝜇𝑏

grad𝑛(𝑥, 𝜇) = (1− 𝜇𝑎𝑛)𝑥− 𝜇𝑏𝑛,
(5.19)

the proximal step of Equation (5.14) becomes

prox(𝑥, 𝜇) =
𝑥− 𝜇𝑏

1 + 𝜇𝑎

prox𝑛(𝑥, 𝜇) =
𝑥− 𝜇𝑏𝑛
1 + 𝜇𝑎𝑛

,

(5.20)

and the SAA (5.16) is

SAA(𝑛) = − 𝑏𝑛
𝑎𝑛

, (5.21)

and is only defined when 𝑎𝑛 > 0.

As it is typical in the literature [98, 112], we measure the error of a solution 𝑥 as the

squared distance from the optimal solution: (𝑥−𝑥*)2 = 𝑥2. We want to compare the

behavior of proximal and gradient steps with respect to this error. Specifically, given

the respective step schedules [𝜇prox
𝑘 ] and [𝜇grad

𝑘 ], using proximal and gradient steps

respectively give us the sequences of (random) solutions [𝑥prox
𝑘 ] and [𝑥grad

𝑘 ], and we

187



(a) 𝑎 = 1 and 𝑏 ∼ Normal(0, 1)

(b) 𝑎 ∼ Gamma(1, 1), 𝑏 ∼ Normal(0, 1)

Figure 5-2: Sample curves of 𝑓(., 𝑆) (dashed) with expectation 𝐹 represented as a
blue line, and the standard deviation of 𝑓(𝑥, 𝑆) for each 𝑥 shown presented with blue
shade.

188



want to compare the sequences of expected errors
[︁
E
[︁
(𝑥grad

𝑘 )2
]︁]︁

and [E [(𝑥prox
𝑘 )2]]. To

remove the dependence on the choice of step schedule we first introduce an “optimal”

step schedule.

5.3.2 Optimal Step Schedule

We know that proximal steps are more stable with respect to the choice of step

schedule [3]. But we also want to know what is the “best possible” behavior of gradient

and proximal steps across all possible step schedules. Given a random starting point

𝑥 ∈ R𝑑, we first show that the error after a gradient or proximal step only depends

on the error of 𝑥 (i.e., E [𝑥2]) and the step size 𝜇:

E
[︀
grad (𝑥, 𝜇)2

]︀
= E

[︀
((1− 𝜇𝑎)𝑥− 𝜇𝑏)2

]︀
(5.22)

= E
[︀
𝑥2
]︀ (︀

𝜇2
(︀
1 + 𝜎2

𝑎

)︀
− 2𝜇 + 1

)︀
+ 𝜇2𝜎2

𝑏 (5.23)

E
[︀
prox (𝑥, 𝜇)2

]︀
= E

[︃(︂
𝑥− 𝜇𝑏

1 + 𝜇𝑎

)︂2
]︃

(5.24)

=
(︀
E
[︀
𝑥2
]︀

+ 𝜇2𝜎2
𝑏

)︀
E
[︂

1

(1 + 𝜇𝑎)2

]︂
, (5.25)

where 𝜎2
𝑎 and 𝜎2

𝑏 are the variances of 𝑎 and 𝑏. (5.23) and (5.25) are obtained using

the independence of 𝑎 and 𝑏, as well as the fact that 𝑎̄ = 1 and 𝑏̄ = 0. The gradient

error only depends on the two first moments of 𝑎 and 𝑏, whereas the proximal error

has a more complicated relationship with 𝑎.

As the expected error after the step is a function of the expected error before the

step, we can study the evolution of this expected error independently from 𝑥. We

therefore update our notation for simplicity, and consider the proximal and gradient

steps in the space of expected error 𝑒 := E [𝑥2]:

grad(𝑒, 𝜇) := 𝑒
(︀
𝜇2
(︀
1 + 𝜎2

𝑎

)︀
− 2𝜇 + 1

)︀
+ 𝜇2𝜎2

𝑏

prox(𝑒, 𝜇) :=
(︀
𝑒 + 𝜇2𝜎2

𝑏

)︀
E
[︂

1

(1 + 𝜇𝑎)2

]︂
.

(5.26)

We can now look at the lowest expected error we can obtain after one step, given

189



the error of the starting point:

grad(𝑒) := min
𝜇

grad(𝑒, 𝜇)

prox(𝑒) := min
𝜇

prox(𝑒, 𝜇).
(5.27)

Starting from 𝑥0 and iteratively applying (5.27), we obtain a step schedule and

its associated sequence of errors.

Definition 2 (Optimal step schedule). For gradient and proximal steps, we intro-

duce the optimal step schedules (𝜇*grad
𝑘 )𝑘≥1 and (𝜇*prox

𝑘 )𝑘≥1. We also introduce the

corresponding optimal errors (𝑒*grad𝑘 )𝑘≥1 and (𝑒*prox𝑘 )𝑘≥1. These schedule and errors

are computed the following way:

𝑒*grad0 = 𝑒*prox0 = 𝑒0 := E
[︀
(𝑥0)

2]︀
𝑒*grad𝑘 := grad(𝑒*grad𝑘−1 ) ∀𝑘 ≥ 1,

𝑒*prox𝑘 := prox(𝑒*prox𝑘−1 ) ∀𝑘 ≥ 1,

𝜇*grad
𝑘 := argmin𝜇 grad(𝑒*grad𝑘−1 , 𝜇) ∀𝑘 ≥ 1,

𝜇*prox
𝑘 := argmin𝜇 prox(𝑒*prox𝑘−1 , 𝜇) ∀𝑘 ≥ 1.

(5.28)

These schedule may be constructed in a greedy way, but they are actually “op-

timal” in our setting (𝑑 = 1). That is, 𝑒*grad𝑘 and 𝑒*prox𝑘 are the best possible errors

that can be reached in 𝑘 steps given any choice of step schedule. We show this in the

following proposition.

Proposition 1. The optimal schedules have the following property:

𝑒*grad𝑘 = min
𝜇1,··· ,𝜇𝑘

grad(grad(· · · grad(𝑒0, 𝜇1) · · · , 𝜇𝑘−1), 𝜇𝑘) ∀𝑘 ≥ 1,

𝑒*prox𝑘 = min
𝜇1,··· ,𝜇𝑘

prox(prox(· · · prox(𝑒0, 𝜇1) · · · , 𝜇𝑘−1), 𝜇𝑘) ∀𝑘 ≥ 1.
(5.29)

Proof. (5.29) is true for 𝑘 = 1, by definition of the optimal schedule. Suppose ∃𝑘 ≥ 1

such that (5.29) is true. We will prove that it is also true for 𝑘+ 1, and Proposition 1

will follow by induction. 𝑒→ grad(𝑒, 𝜇) is an increasing function of 𝑒 for any 𝜇. We

190



can verify this using (5.26), as this statement is equivalent to

𝜇2
(︀
1 + 𝜎2

𝑎

)︀
− 2𝜇 + 1 ≥ 0 ⇐⇒ (𝜇− 1)2 + 𝜇2𝜎2

𝑎 ≥ 0.

𝑒→ prox(𝑒, 𝜇) is also increasing function of 𝑒 as E
[︁

1
(1+𝜇𝑎)2

]︁
≥ 0. Therefore we have:

min
𝜇1,··· ,𝜇𝑘+1

grad(grad(· · · grad(𝑒0, 𝜇1) · · · , 𝜇𝑘−1), 𝜇𝑘) (5.30)

= min
𝜇𝑘+1

min
𝜇1,··· ,𝜇𝑘

grad(grad(· · · grad(𝑒0, 𝜇1) · · · , 𝜇𝑘), 𝜇𝑘+1) (5.31)

= min
𝜇𝑘+1

grad( min
𝜇1,··· ,𝜇𝑘

grad(· · · grad(𝑒0, 𝜇1) · · · , 𝜇𝑘), 𝜇𝑘+1) (5.32)

= min
𝜇𝑘+1

grad(𝑒*grad𝑘 , 𝜇𝑘+1) (5.33)

= 𝑒*grad𝑘+1 (5.34)

where (5.32) uses the fact that grad(., 𝜇) is an increasing function, (5.33) uses the

induction hypothesis and (5.34) is the definition of the optimal schedule. And the

exact same reasoning applies to proximal steps.

Computing the optimal schedule If we can evaluate grad(𝑒) and prox(𝑒), Defi-

nition 2 provides a recursive way of computing the optimal step schedule:

𝑒*grad𝑘 = grad(𝑘)(𝑒0)

𝑒*prox𝑘 = prox(𝑘)(𝑒0)
(5.35)

We can find a closed form for grad(𝑒):

𝜇*grad := argmin𝜇 grad(𝑒, 𝜇)

= argmin𝜇 𝑒
(︀
𝜇2
(︀
1 + 𝜎2

𝑎

)︀
− 2𝜇 + 1

)︀
+ 𝜇2𝜎2

𝑏

⇐⇒ 𝑒
(︀
2𝜇*grad (︀1 + 𝜎2

𝑎

)︀
− 2
)︀

+ 2𝜇*grad𝜎2
𝑏 = 0

⇐⇒ 𝜇*grad =
𝑒

𝜎2
𝑏 + (𝜎2

𝑎 + 1)𝑒

(5.36)

191



grad(𝑒) = grad(𝑒, 𝜇*grad)

= 𝑒
𝜎2
𝑎𝑒 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

(5.37)

For proximal steps, we cannot find a general closed form because of the dependence

on the distribution of 𝑎:

𝜇*prox := argmin𝜇 prox(𝑒, 𝜇)

= argmin𝜇

(︀
𝑒 + 𝜇2𝜎2

𝑏

)︀
E
[︂

1

(1 + 𝜇𝑎)2

]︂ (5.38)

prox(𝑒) = prox(𝑒, 𝜇*prox)

= min
𝜇

(︀
𝑒 + 𝜇2𝜎2

𝑏

)︀
E
[︂

1

(1 + 𝜇𝑎)2

]︂ (5.39)

In the case of mini-batches, we also define grad𝑛(𝑒) and prox𝑛(𝑒) to be the equiv-

alent of grad(𝑒) and prox(𝑒) when the mini-batch size is 𝑛.

We note that this optimal schedule enables a fair comparison between the two

algorithms. It is chosen without the knowledge of the samples [𝑆𝑘], only their distri-

bution. We can also use this framework to represent the uncertainty in the optimal

solution 𝑥*. Indeed, because of the space translation used in Section 5.3.1, there is

an equivalence between uncertainty in the optimal solution 𝑥* and the uncertainty in

the starting point 𝑥0.

For comparison, we can also compute the error of SAA with 𝑛 samples (when it

is defined):

𝑒SAA
𝑛 := E

[︀
(SAA(𝑛))2

]︀
= E

[︃(︂
− 𝑏𝑛
𝑎𝑛

)︂2
]︃

=
𝜎2
𝑏

𝑛
E
[︂

1

𝑎2𝑛

]︂
(5.40)

In a general case, we do not have a closed form for the solution of the recurrence

relations (5.35). Nonetheless, we can look at some special cases to build intuition and

better understand the general case.

192



5.3.3 Deterministic Curvature, Random Gradient

We first consider the case 𝑎 = 1, which corresponds to a deterministic curvature (see

Figure 5-2a), and the only uncertainty comes from 𝑏. In this case, the recurrence

relations defining the optimal step schedule simplify and we can get closed forms of

the optimal schedules and errors.

Gradient Steps (5.36) and (5.37) simplify to:

𝜇*grad(𝑒) =
𝑒

𝑒 + 𝜎2
𝑏

grad(𝑒) =
𝑒𝜎2

𝑏

𝑒 + 𝜎2
𝑏

(5.41)

and it can easily be verified by induction that the closed form solution of the optimal

schedule is:

𝑒*grad𝑘 = grad(𝑘)(𝑒0) (5.42)

=
1

1
𝑒0

+ 𝑘 1
𝜎2
𝑏

(5.43)

𝜇*grad
𝑘 =

𝑒*grad𝑘−1

𝑒*grad𝑘−1 + 𝜎2
𝑏

(5.44)

=
1

𝜎2
𝑏

𝑒0
+ 𝑘

(5.45)

Proximal Steps (5.38) and (5.39) simplify to:

𝜇*prox(𝑒) = argmin𝜇

𝑒 + 𝜇2𝜎2
𝑏

(1 + 𝜇)2
(5.46)

⇐⇒ 2𝜎2
𝑏𝜇

*prox(𝑒)(1 + 𝜇*prox(𝑒))2 − (𝑒 + 𝜇*prox(𝑒)2𝜎2
𝑏 )2(1 + 𝜇*prox(𝑒)) = 0 (5.47)

⇐⇒ 𝜎2
𝑏𝜇

*prox(𝑒)(1 + 𝜇*prox(𝑒)) = 𝑒 + 𝜇*prox(𝑒)2𝜎2
𝑏 = 0 (5.48)

⇐⇒ 𝜇*prox(𝑒) =
𝑒

𝜎2
𝑏

(5.49)

193



prox(𝑒) = prox(𝑒, 𝜇*prox(𝑒)) (5.50)

=
𝑒 + ( 𝑒

𝜎2
𝑏
)2𝜎2

𝑏(︁
1 + 𝑒

𝜎2
𝑏

)︁2 (5.51)

=
𝑒𝜎2

𝑏

𝑒 + 𝜎2
𝑏

(5.52)

= grad(𝑒). (5.53)

where (5.47) is just obtained by computing the derivative and setting it to 0. From

(5.53), we get that optimal schedule of gradient and proximal steps have the same

optimal errors in the case of deterministic curvature. Nonetheless, the choice of step

sizes is not the same:

𝑒*prox𝑘 = 𝑒*grad𝑘 (5.54)

=
1

1
𝑒0

+ 𝑘 1
𝜎2
𝑏

(5.55)

𝜇*prox
𝑘 =

𝑒*prox𝑘−1

𝜎2
𝑏

(5.56)

=
1

𝜎2
𝑏

𝑒0
+ (𝑘 − 1)

(5.57)

We note the sub-linear convergence of the optimal step schedule, as well as the

following bound:

𝑒*grad𝑘 = 𝑒*prox𝑘 ≤ 𝜎2
𝑏 ∀𝑘 ≥ 1 (5.58)

This bound is independent of the starting error 𝑒0. Therefore, the optimal errors

converge in one step to a fixed region whose size depends on 𝜎2
𝑏 .

Mini-batching In this setting, using 𝑛 > 1 does not affect the convergence. For-

mally, given 𝑁, 𝑘, 𝑛 ≥ 1, doing 𝑁𝑘 steps with a batch size 𝑛 is equivalent to doing 𝑘

steps with batch size 𝑛𝑁 : only the total number of data-points seen (𝑁𝑘𝑛) matters.

194



Indeed, in both case we get the final error:

1
1
𝑒0

+ 𝑁𝑘𝑛 1
𝜎2
𝑏

5.3.4 Random Curvature, Deterministic Gradient

In this setting, we set 𝑏 = 0 but 𝑎 random. This case is the “noiseless” case (or “easy”

in [3]), as 𝑥* = 0 is an optimal solution for any choice of 𝑎, and we expect linear

convergence of the algorithms.

Gradient Steps (5.36) and (5.37) simplifies to:

𝜇*grad =
1

1 + 𝜎2
𝑎

grad(𝑒) = 𝑒
𝜎2
𝑎

1 + 𝜎2
𝑎

(5.59)

Therefore the convergence is linear and we have:

𝑒*grad𝑘 = 𝑒0

(︂
𝜎2
𝑎

1 + 𝜎2
𝑎

)︂𝑘

(5.60)

𝜇*grad
𝑘 =

1

1 + 𝜎2
𝑎

(5.61)

In this case, the step size is constant and the geometric convergence depends on 𝜎2
𝑎.

Remark 2. In this setting, mini-batching “hurts” the gradient steps: 𝑁𝑘 steps with a

batch size 𝑛 leads to a lower error than 𝑁 steps with batch size 𝑘𝑛:

𝑒0

(︃
𝜎2
𝑎

𝑛

1 + 𝜎2
𝑎

𝑛

)︃𝑁𝑘

≤ 𝑒0

(︃
𝜎2
𝑎

𝑛𝑘

1 + 𝜎2
𝑎

𝑛𝑘

)︃𝑁

(5.62)

Proof. Taking the logarithm, (5.62) becomes:

𝑁𝑘 log

(︃
𝜎2
𝑎

𝑛

1 + 𝜎2
𝑎

𝑛

)︃
≤ 𝑁 log

(︃
𝜎2
𝑎

𝑛𝑘

1 + 𝜎2
𝑎

𝑛𝑘

)︃
(5.63)

⇐⇒ 𝑓(𝑥) ≤ 1

𝑘
𝑓
(︁𝑥
𝑘

)︁
(5.64)

195



with 𝑥 = 𝜎2
𝑎

𝑛
and 𝑓(𝑥) = log( 𝑥

1+𝑥
). We then have:

𝑑

𝑑𝑥𝑥≥0

(︂
1

𝑘
𝑓
(︁𝑥
𝑘

)︁
− 𝑓(𝑥)

)︂
=

1
𝑘

𝑥( 1
𝑘
𝑥 + 1)

− 1

𝑥(𝑥 + 1)
=

1
𝑘
− 1

𝑥( 1
𝑘
𝑥 + 1)(𝑥 + 1)

≤ 0 (5.65)

and

lim
𝑥→∞

1

𝑘
𝑓
(︁𝑥
𝑘

)︁
− 𝑓(𝑥) = 0 (5.66)

Therefore
1

𝑘
𝑓
(︁𝑥
𝑘

)︁
− 𝑓(𝑥) ≥ 0 (5.67)

which proves our remark.

Proximal Steps (5.38) and (5.39) simplify to:

𝜇*prox = argmin𝜇𝑒E
[︂

1

(1 + 𝜇𝑎)2

]︂
= +∞

prox(𝑒) = E𝑎

⎧⎪⎨⎪⎩𝑒 if 𝑎 = 0

𝑒 otherwise.

= 𝑒P(𝑎 = 0)

(5.68)

that is, proximal steps converge to 𝑥* = 0 for the first non-zero sampled value of 𝑎.

In terms of error, we have geometric convergence:

𝑒*prox𝑘 = 𝑒0 (P(𝑎 = 0))𝑘 (5.69)

𝜇*prox
𝑘 = +∞ (5.70)

For any value of 𝑎, a proximal step reduces the error more than a gradient step,

therefore the convergence of the optimal schedule is faster for proximal steps. Fur-

thermore the two algorithms behave extremely differently: If P(𝑎 = 0) = 0, proximal

is not affected by the curvature noise and converges in one step, whereas gradient

steps converge linearly. Furthermore, unlike gradient steps, proximal steps are not

196



affected negatively by mini-batching:

Remark 3. In this setting, mini-batching does not affect the proximal steps: 𝑘𝑁 steps

with a batch size 𝑛, or 𝑁 steps with batch size 𝑘𝑛 both lead to the error:

𝑒0P(𝑎 = 0)𝑘𝑛𝑁 (5.71)

Proof. 𝑘𝑁 steps with batch size 𝑛 have the error:

𝑒0P(𝑎𝑛 = 0)𝑘𝑁 = 𝑒0(P(𝑎 = 0)𝑛)𝑘𝑁 = 𝑒0P(𝑎 = 0)𝑘𝑛𝑁 (5.72)

𝑁 steps with batch size 𝑘𝑛 have the same error:

𝑒0P(𝑎𝑘𝑛 = 0)𝑁 = 𝑒0(P(𝑎 = 0)𝑘𝑛)𝑁 = 𝑒0P(𝑎 = 0)𝑘𝑛𝑁 (5.73)

5.3.5 General Case

When both 𝑎 and 𝑏 are random, we do not have a closed form of the optimal schedule

for gradient or proximal steps. But the optimal schedule and the algorithm behavior

can still be obtained numerically, as the optimal schedule can be computed iteratively

(see Definition 2).

Two regimes of convergence Figure 5-3 shows 4 simulations for various distri-

butions for 𝑎. The three algorithms have the same asymptotic convergence under an

optimal step schedule. We formalize this finding in the following proposition:

Proposition 2. We have the following asymptotic behaviors:

(a) Asymptotic sublinear convergence for gradient steps:

𝑒*grad𝑘 ∼𝑘→+∞
𝜎2
𝑏

𝑘
(5.74)

197



(a) 𝑎 ∼ Uniform(0, 2) (𝜎2
𝑎 = 1/3) (b) 𝑎 ∼ Uniform(0.2, 1.8)

(c) 𝑎 ∼ Gamma, (𝜎2
𝑎 = 1/3) (d) 𝑎 ∈ 𝐴× Bernouilli(𝑝), (𝜎2

𝑎 = 1/3)

Figure 5-3: Errors of the optimal schedule for proximal steps [𝑒*prox𝑘 ] (blue and green
curves) and gradient steps [𝑒*grad𝑘 ] (orange and purple) when starting from 𝑒0 = 104

and 𝑒0 = 1. The x-axis represent the number of steps of the iterative algorithms,
which also corresponds to the number of samples seen. We compute SAA (dashed
yellow) for various values of 𝑛. We choose 𝑏 such that 𝜎2

𝑏 = 1 (with 𝑏 ∼ Normal(0, 1))
and we show various distributions for 𝑎, always respecting 𝑎̄ = 1. Additionally, (a),
((c) and (d) all have 𝜎2

𝑎 = 1/3. In (d), the parameters 𝑝 and 𝐴 are chosen to have
the desired mean and variance. The figure uses the logarithmic scale on its axis.

198



(b) Same asymptotic sublinear convergence for proximal steps

𝑒*prox𝑘 ∼𝑘→+∞
𝜎2
𝑏

𝑘
(5.75)

(c) Additionally, if lim𝑛→+∞ E[ 1
𝑎2𝑛

] = 1, which is true for example when 𝑎 is bounded

away from 0, we also have the same asymptotic convergence for SAA:

𝑒*SAA
𝑘 ∼𝑘→+∞

𝜎2
𝑏

𝑘
(5.76)

(d) Lower bound for gradient steps (with same asymptotic behavior)

𝑒*grad𝑘 ≥ 1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

∀𝑘 ≥ 0 (5.77)

(e) Same lower bound for proximal steps

𝑒*prox𝑘 ≥ 1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

∀𝑘 ≥ 0 (5.78)

Proof of (a). We want to prove:

𝑒*grad𝑘 ∼𝑘→+∞
𝜎2
𝑏

𝑘
(5.79)

We have:

𝑒*grad𝑘+1 = grad(𝑒*grad𝑘 ) = 𝑒*grad𝑘

𝜎2
𝑎𝑒

*grad
𝑘 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑒*grad𝑘 + 𝜎2

𝑏

. (5.80)

In other words, given the sequence [𝑢𝑛] such that:

𝑢𝑛+1 = 𝐹 (𝑢𝑛) := 𝑢𝑛
𝜎2
𝑎𝑢𝑛 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑢𝑛 + 𝜎2

𝑏

, (5.81)

199



and 𝑢0 = 𝑒0, we want to prove the asymptotic behavior 𝑢𝑛 ∼𝑛→+∞
𝜎2
𝑏

𝑛
, without having

a closed form for 𝑢𝑛. First, by trivial induction, as 𝑥 ≥ 0 =⇒ 𝐹 (𝑥) ≥ 0, we have

𝑢𝑛 ≥ 0 ∀𝑛 ≥ 0. (5.82)

We also have:

𝑢𝑛+1 ≤ 𝑢𝑛 ∀𝑛 ≥ 0, (5.83)

and this follows from a simple inequality:

𝐹 (𝑢𝑛) = 𝑢𝑛
1

1 + 𝑢𝑛

𝜎2
𝑎𝑒

*grad
𝑘 +𝜎2

𝑏

≤ 𝑢𝑛 ∀𝑛 ≥ 0. (5.84)

Therefore [𝑢𝑛] is a non-negative decreasing sequence, and hence converges to a limit

𝑙 ≥ 0. To get the value of 𝑙, we take the limit on both sides of (5.81):

lim
𝑛→∞

𝐹 (𝑢𝑛) = lim
𝑛→∞

𝑢𝑛 (5.85)

=⇒ lim
𝑛→∞

𝑢𝑛
𝜎2
𝑎𝑢𝑛 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑢𝑛 + 𝜎2

𝑏

= 𝑙 (5.86)

=⇒ 𝑙
𝜎2
𝑎𝑙 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑙 + 𝜎2

𝑏

= 𝑙 (5.87)

=⇒ 𝑙
−𝑙

(1 + 𝜎2
𝑎)𝑙 + 𝜎2

𝑏

= 0 (5.88)

=⇒ 𝑙 = 0 (5.89)

Which yields:

lim
𝑛→+∞

𝑢𝑛 = 0 ⇐⇒ 𝑢𝑛 = 𝑜(1). (5.90)

Let 𝑣𝑛 = 𝜑(𝑢𝑛) =
𝜎2
𝑏

𝑢𝑛
. Using a Taylor approximation of 𝜑 in 𝑢𝑛, we have, for all 𝑛 ≥ 0:

200



𝑣𝑛+1 − 𝑣𝑛 = (𝑢𝑛+1 − 𝑢𝑛)𝜑′(𝑢𝑛) + 𝑜(𝑢𝑛+1 − 𝑢𝑛) (5.91)

= −(𝑢𝑛+1 − 𝑢𝑛)𝜎2
𝑏

𝑢2
𝑛

+ 𝑜(1) (5.92)

as 𝑢𝑛+1 − 𝑢𝑛 = 𝑜(1)− 𝑜(1) = 𝑜(1). Using Taylor approximations once more, we also

have:

𝑢𝑛+1 = 𝑢𝑛
𝜎2
𝑎𝑢𝑛 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑢𝑛 + 𝜎2

𝑏

(5.93)

= 𝑢𝑛

𝜎2
𝑎

𝜎2
𝑏
𝑢𝑛 + 1

1+𝜎2
𝑎

𝜎2
𝑏
𝑢𝑛 + 1

(5.94)

= 𝑢𝑛(
𝜎2
𝑎

𝜎2
𝑏

𝑢𝑛 + 1)(1− 1 + 𝜎2
𝑎

𝜎2
𝑏

𝑢𝑛 + 𝑜(𝑢𝑛)) (5.95)

= 𝑢𝑛(1− 1

𝜎2
𝑏

𝑢𝑛 + 𝑜(𝑢𝑛)) (5.96)

= 𝑢𝑛 −
1

𝜎2
𝑏

𝑢2
𝑛 + 𝑜(𝑢2

𝑛). (5.97)

We insert this expression in (5.92) and obtain:

𝑣𝑛+1 − 𝑣𝑛 = −
(− 1

𝜎2
𝑏
𝑢2
𝑛 + 𝑜(𝑢2

𝑛))𝜎2
𝑏

𝑢2
𝑛

+ 𝑜(1) (5.98)

= 1 + 𝑜(1). (5.99)

The series
∑︀

𝑛 𝑣𝑛+1− 𝑣𝑛 diverges, and equivalence of the terms implies equivalence of

201



the partial sums:

𝑛−1∑︁
𝑖=1

𝑣𝑖+1 − 𝑣𝑖 = 𝑛 + 𝑜(𝑛) (5.100)

=⇒ 𝑣𝑛 − 𝑣0 = 𝑛 + 𝑜(𝑛) (5.101)

=⇒ 𝜎2
𝑏

𝑢𝑛

= 𝑛 + 𝑜(𝑛) (5.102)

=⇒ 𝜎2
𝑏

𝑛𝑢𝑛

= 1 + 𝑜(1) (5.103)

=⇒ 𝑢𝑛 ∼𝑛→+∞
𝜎2
𝑏

𝑛
(5.104)

=⇒ 𝑒*grad𝑘 ∼𝑘→+∞
𝜎2
𝑏

𝑘
(5.105)

Proof of (b) and (e). We want to prove:

𝑒*prox𝑘 ∼𝑘→+∞
𝜎2
𝑏

𝑘
(5.106)

𝑒*prox𝑘 ≥ 1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

∀𝑘 ≥ 0. (5.107)

We do not have a closed form for 𝑒*prox𝑘 but we have:

𝑒*prox𝑘+1 = min
𝜇

prox(𝑒, 𝜇) = min
𝜇

(︀
𝑒*prox𝑘 + 𝜇2𝜎2

𝑏

)︀
E
[︂

1

(1 + 𝜇𝑎)2

]︂
∀𝑘 ≥ 0. (5.108)

First, we prove the bound:

1

(1 + 𝜇)2
≤ E

[︂
1

(1 + 𝜇𝑎)2

]︂
≤ 1− 2𝜇 + 3(1 + 𝜎2

𝑎)𝜇2. (5.109)

The left-hand term is just Jensen inequality on the convex function 𝑎→ 1
(1+𝜇𝑎)2

which

gives

E
[︂

1

(1 + 𝜇𝑎)2

]︂
≥ 1

(1 + 𝜇E [𝑎])2
=

1

(1 + 𝜇)2
. (5.110)

To prove the right-hand inequality of 5.109, let 𝑓(𝜇) = 1
(1+𝜇𝑎)2

with 𝑎 ≥ 0, 𝜇 ≥ 0. We

have 𝑓 ′(𝜇) = −2𝑎
(1+𝜇𝑎)3

≤ 0, 𝑓 ′′(𝜇) = 6𝑎2

(1+𝜇𝑎)4
≥ 0 and 𝑓 ′′′(𝜇) = −24𝑎3

(1+𝜇𝑎)5
≤ 0. Therefore,

202



given the signs of the third derivative, a Taylor expansion in 𝜇 = 0 for 𝜇 ≥ 0 gives

the bounds:

𝑓(𝜇) ≤ 𝑓(0) + 𝜇𝑓 ′(0) +
𝜇2

2
𝑓 ′′(0) (5.111)

=⇒ 𝑓(𝜇) ≤ 1− 2𝑎𝜇 + 3𝑎2𝜇2 (5.112)

=⇒ E
[︂

1

(1 + 𝜇𝑎)2

]︂
≤ 1− 2E [𝑎]𝜇 + 3E

[︀
𝑎2
]︀
𝜇2 (5.113)

=⇒ E
[︂

1

(1 + 𝜇𝑎)2

]︂
≤ 1− 2𝜇 + 3(1 + 𝜎2

𝑎)𝜇2. (5.114)

Inserting (5.109) into (5.108), we get:

min
𝜇

(︀
𝑒*prox𝑘 + 𝜇2𝜎2

𝑏

)︀ 1

(1 + 𝜇)2
≤ 𝑒*prox𝑘+1 ≤ min

𝜇

(︀
𝑒*prox𝑘 + 𝜇2𝜎2

𝑏

)︀ (︀
1− 2𝜇 + 3(1 + 𝜎2

𝑎)𝜇2
)︀

(5.115)

The left side corresponds to the case with 𝑎 = 1 studied in Section 5.3.3, which had

the closed form 1
1
𝑒0

+𝑘 1

𝜎2
𝑏

, and with a trivial induction using this lower bound:

1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

≤ 𝑒*prox𝑘 ∀𝑘 ≥ 0, (5.116)

which proves part (e) of proposition 2.

We then develop the right side of (5.115):

(︀
𝑒*prox𝑘 + 𝜇2𝜎2

𝑏

)︀ (︀
1− 2𝜇 + 3(1 + 𝜎2

𝑎)𝜇2
)︀

= 𝑒*prox𝑘 − (2𝑒*prox𝑘 )𝜇 + (𝜎2
𝑏 + 3(1 + 𝜎2

𝑎)𝑒*prox𝑘 )𝜇2 + (3(1 + 𝜎2
𝑎)𝜎2

𝑏𝜇− 2𝜎2
𝑏 )𝜇3

≤ 𝑒*prox𝑘 − (2𝑒*prox𝑘 )𝜇 + (𝜎2
𝑏 + 3(1 + 𝜎2

𝑎)𝑒*prox𝑘 )𝜇2 when 𝜇 ≤ 2

3(1 + 𝜎2
𝑎)
. (5.117)

We also have:

argmin𝜇𝑒
*prox
𝑘 − (2𝑒*prox𝑘 )𝜇 + (𝜎2

𝑏 + 3(1 + 𝜎2
𝑎)𝑒*prox𝑘 )𝜇2 =

𝑒*prox𝑘

𝜎2
𝑏 + 3(1 + 𝜎2

𝑎)𝑒*prox𝑘

,

(5.118)

203



and this solution satisfies the condition from (5.117):

𝑒*prox𝑘

𝜎2
𝑏 + 3(1 + 𝜎2

𝑎)𝑒*prox𝑘

=
1

𝜎2
𝑏

𝑒*prox𝑘
+ 3(1 + 𝜎2

𝑎)
≤ 2

3(1 + 𝜎2
𝑎)
. (5.119)

Therefore we get:

min
𝜇

(︀
𝑒*prox𝑘 + 𝜇2𝜎2

𝑏

)︀ (︀
1− 2𝜇 + 3(1 + 𝜎2

𝑎)𝜇2
)︀

(5.120)

≤ min
𝜇

𝑒*prox𝑘 − (2𝑒*prox𝑘 )𝜇 + (𝜎2
𝑏 + 3(1 + 𝜎2

𝑎)𝑒*prox𝑘 )𝜇2 (5.121)

= 𝑒*prox𝑘 − (𝑒*prox𝑘 )2

𝜎2
𝑏 + 3(1 + 𝜎2

𝑎)𝑒*prox𝑘

(5.122)

= 𝑒*prox𝑘

(2 + 3𝜎2
𝑎)𝑒*prox𝑘 + 𝜎2

𝑏

(1 + ((2 + 3𝜎2
𝑎))𝑒*prox𝑘 + 𝜎2

𝑏

. (5.123)

Note that the last term corresponds to the equation (5.81) of the optimal gradient

steps, replacing 𝜎2
𝑎 by 2 + 3𝜎2

𝑎. Therefore our analysis of the gradient steps applies to

this upper bound, and the sequence (𝑢𝑛)𝑛 such that

𝑢𝑛+1 = 𝑢𝑛
(2 + 3𝜎2

𝑎)𝑢𝑛 + 𝜎2
𝑏

(1 + ((2 + 3𝜎2
𝑎))𝑢𝑛 + 𝜎2

𝑏

, (5.124)

has the asymptotic behavior 𝑢𝑛 ∼𝑛→+∞
𝜎2
𝑏

𝑛
. Because of (5.123), we have by immediate

induction that 𝑒*prox𝑘 ≤ 𝑢𝑘, and therefore, also using the lower bound

1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

≤ 𝑒*prox𝑘 ≤ 𝑢𝑘 ∀𝑘 ≥ 0 (5.125)

=⇒ 𝜎2
𝑏

𝑘
+ 𝑜(

1

𝑘
) ≤ 𝑒*prox𝑘 ≤ 𝜎2

𝑏

𝑘
+ 𝑜(

1

𝑘
) ∀𝑘 ≥ 0 (5.126)

=⇒ 𝑒*prox𝑘 ∼𝑛→+∞
𝜎2
𝑏

𝑛
, (5.127)

which proves part (b) of proposition 2.

Proof of (c). We want to prove:

𝑒*SAA
𝑘 ∼𝑘→+∞

𝜎2
𝑏

𝑘
, (5.128)

204



when lim𝑛→+∞ E
[︁

1
𝑎2𝑛

]︁
= 1. Equation (5.40) gives us

𝑒SAA
𝑘 =

𝜎2
𝑏

𝑘
E
[︂

1

𝑎2𝑛

]︂
. (5.129)

As lim𝑛→+∞ E
[︁

1
𝑎2𝑛

]︁
= 1, we have 𝑒SAA

𝑘 =∼𝑘→+∞
𝜎2
𝑏

𝑘
. We then prove that lim𝑛→+∞ E

[︁
1
𝑎2𝑛

]︁
=

1 when 𝑎 is bounded away from 0, i.e.:

(∃𝜖 > 0, 𝑎 ≥ 𝜖) =⇒ lim
𝑛→+∞

E
[︂

1

𝑎2𝑛

]︂
= 1. (5.130)

By strong law of large numbers, 𝑎𝑛 converges to 𝑎̄ = 1 almost surely. The continuity

of 𝑥→ 1
𝑥2 implies that 1

𝑎2𝑛
also converges to 1 almost surely. Additionally, we have the

bound 𝑎𝑛 ≥ 𝜖 and therefore 1
𝑎2𝑛
≤ 1

𝜖2
. Using the theorem of dominated convergence

on the sequence of random variables [ 1
𝑎2𝑛

], we get:

lim
𝑛→+∞

E
[︂

1

𝑎2𝑛

]︂
= E [1] = 1 (5.131)

Proof of (d). We want to prove:

𝑒*grad𝑘 ≥ 1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

∀𝑘 ≥ 0. (5.132)

We have:

𝑒*grad𝑘+1 = 𝑒*grad𝑘

𝜎2
𝑎𝑒

*grad
𝑘 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑒*grad𝑘 + 𝜎2

𝑏

(5.133)

≥ 𝑒*grad𝑘

𝜎2
𝑏

𝑒*grad𝑘 + 𝜎2
𝑏

. (5.134)

Indeed, if 𝑓(𝜎2
𝑎) =

𝜎2
𝑎𝑒

*grad
𝑘 +𝜎2

𝑏

(1+𝜎2
𝑎)𝑒

*grad
𝑘 +𝜎2

𝑏

then

𝑓 ′(𝜎2
𝑎) =

(︃
𝑒*grad𝑘

(1 + 𝜎2
𝑎)𝑒*grad𝑘 + 𝜎2

𝑏

)︃2

≥ 0. (5.135)

205



Therefore 𝑓(𝜎2
𝑎) ≥ 𝑓(0) which implies (5.134). We note that (5.134) corresponds to

the case of deterministic curvature (𝑎 = 1) from Section 5.3.3 for which we have a

closed form. By immediate induction, we have:

𝑒*grad𝑘 ≥ 1
1
𝑒0

+ 𝑘 1
𝜎2
𝑏

∀𝑘 ≥ 0, (5.136)

which proves part (d) of proposition 2.

On the other hand, the behavior of the algorithms is not equivalent in the transient

phase, and proximal steps outperform gradient steps by orders of magnitude in Figures

5-3a, 5-3b and 5-3c. We formalize this in the following proposition:

Proposition 3. (a) For gradient steps, we have:

𝑒*grad𝑘 ≥ 𝑒0

(︂
𝜎2
𝑎

1 + 𝜎2
𝑎

)︂𝑘

∀𝑘 ≥ 1, 𝑒0 ≥ 0 (5.137)

𝑒*grad𝑘 ∼𝑒0→+∞ 𝑒0

(︂
𝜎2
𝑎

1 + 𝜎2
𝑎

)︂𝑘

∀𝑘 ≥ 1 (5.138)

(b) If E[ 1
𝑎2

] < +∞, proximal steps are bounded independently of 𝑒0:

𝑒*prox𝑘 ≤ 𝜎2
𝑏E[

1

𝑎2
] ∀𝑘 ≥ 0 (5.139)

Proof. Proving (a) we want to prove

𝑒*grad𝑘 ≥ 𝑒0

(︂
𝜎2
𝑎

1 + 𝜎2
𝑎

)︂𝑘

∀𝑘 ≥ 1, 𝑒0 ≥ 0 (5.140)

206



We have:

𝑒*grad𝑘+1 = 𝑒*grad𝑘

𝜎2
𝑎𝑒

*grad
𝑘 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑒*grad𝑘 + 𝜎2

𝑏

(5.141)

≥ 𝑒*grad𝑘

𝜎2
𝑎

1 + 𝜎2
𝑎

(5.142)

indeed, if 𝑓(𝜎2
𝑏 ) =

𝜎2
𝑎𝑒

*grad
𝑘 +𝜎2

𝑏

(1+𝜎2
𝑎)𝑒

*grad
𝑘 +𝜎2

𝑏

then

𝑓 ′(𝜎2
𝑏 ) =

𝑒*grad𝑘(︁
(1 + 𝜎2

𝑎)𝑒*grad𝑘 + 𝜎2
𝑏

)︁2 ≥ 0 (5.143)

therefore 𝑓(𝜎2
𝑏 ) ≥ 𝑓(0) which implies (5.142). By immediate induction, we have:

𝑒*grad𝑘 ≥ 𝑒0

(︂
𝜎2
𝑎

1 + 𝜎2
𝑎

)︂𝑘

∀𝑘 ≥ 1, 𝑒0 ≥ 0 (5.144)

Furthermore, we also have

𝑒*grad𝑘+1 ∼𝑒0→+∞ 𝑒*grad𝑘

𝜎2
𝑎

1 + 𝜎2
𝑎

∀𝑘 ≥ 1, 𝑒0 ≥ 0 (5.145)

again, by immediate induction on 𝑘, we have:

𝑒*grad𝑘 ∼𝑒0→+∞ 𝑒0

(︂
𝜎2
𝑎

1 + 𝜎2
𝑎

)︂𝑘

∀𝑘 ≥ 1 (5.146)

which finishes the proof of part (a) of proposition 3.

Proving (b) we want to prove:

𝑒*prox𝑘 ≤ 𝜎2
𝑏E[

1

𝑎2
] ∀𝑘 ≥ 0 (5.147)

when E[ 1
𝑎2

] < +∞.

207



lim
𝜇→+∞

prox(𝑒0, 𝜇) = lim
𝜇→+∞

(︀
𝑒0 + 𝜇2𝜎2

𝑏

)︀
E
[︂

1

(1 + 𝜇𝑎)2

]︂
(5.148)

= lim
𝜇→+∞

E
[︂
𝑒0 + 𝜇2𝜎2

𝑏

(1 + 𝜇𝑎)2

]︂
(5.149)

= E
[︂

lim
𝜇→+∞

𝑒0 + 𝜇2𝜎2
𝑏

(1 + 𝜇𝑎)2

]︂
(5.150)

= E
[︂
𝜎2
𝑏

𝑎2

]︂
(5.151)

where (5.150) is a consequence of the dominated convergence theorem. To choose the

bound needed to apply this theorem, let 𝑓(𝜇) =
𝑒0+𝜇2𝜎2

𝑏

(1+𝜇𝑎)2
. We have:

𝑓 ′(𝜇) =
𝜎2
𝑏 − 2𝑎𝑒0 − 𝜇𝑎𝜎2

𝑏

(1 + 𝜇𝑎)2
(5.152)

Therefore 𝑓 is increasing when 𝜇 ≤ 1
𝑎
− 2𝑒0

𝜎2
𝑏
, and then decreasing. If 1

𝑎
− 2𝑒0

𝜎2
𝑏
≥ 0, i.e.,

𝜎2
𝑏 ≥ 2𝑎𝑒0, then we have:

𝑓(𝜇) ≤ 𝑓(
1

𝑎
− 2𝑒0

𝜎2
𝑏

) =
(𝜎2

𝑏 )2

4𝑎(𝑏− 𝑎𝑒0)
≤ (𝜎2

𝑏 )2

4𝑎2𝑒0
(5.153)

as 𝜎2
𝑏 ≥ 2𝑎𝑒0 =⇒ 𝑏− 𝑎𝑒0 ≥ 𝑎𝑒0,

If 𝜎2
𝑏 < 2𝑎𝑒0, then

𝑓(𝜇) ≤ 𝑓(0) = 𝜎2
𝑏 − 2𝑎𝑒0 ≤ 𝜎2

𝑏 (5.154)

Therefore we have

𝑓(𝜇) ≤ 𝜎2
𝑏 +

(𝜎2
𝑏 )2

4𝑎2𝑒0
(5.155)

and

E
[︂
𝜎2
𝑏 +

(𝜎2
𝑏 )2

4𝑎2𝑒0

]︂
= 𝜎2

𝑏 +
(𝜎2

𝑏 )2

4𝑒0
E
[︂

1

𝑎2

]︂
< +∞ (5.156)

that is, we can do (5.150) by dominated convergence.

208



We can conclude with 𝑒*prox1 = min𝜇 prox(𝑒0, 𝜇) ≤ lim𝜇→+∞ prox(𝑒0, 𝜇) = 𝜎2
𝑏E[ 1

𝑎2
]

We already showed in the proof of proposition 2 that [𝑒*prox𝑘 ] is a decreasing se-

quence, therefore 𝑒*prox𝑘 ≤ 𝑒*prox1 which finishes the proof of part (b) of proposition

3.

Putting all of this together, there are two regimes of convergence. In the transient

phase, when and if 𝑒 >> 𝜎2
𝑏 , proximal and gradient steps behave as if 𝑏 was deter-

ministic (studied in Section 5.3.4). After this phase, they behave asymptotically as if

𝑎 was deterministic, i.e. the case of Section 5.3.3.

The only caveat is that proximal steps are not as good when 𝑎 has a high proba-

bility to take values arbitrarily close to 0, in particular when E[ 1
𝑎2

] is infinite or large.

The comparison of figures 5-3a and 5-3b illustrates this difference. As an extreme

case, figure 5-3d uses a Bernouilli distribution for 𝑎, which implies P(𝑎 = 0) > 0 and

affects the proximal steps negatively. Note that the gradient steps are not affected

by these changes of distribution as long as 𝑎̄ and 𝜎2
𝑎 are not changed.

The errors of SAA for various 𝑛, when they are well defined, are also represented

in Figure 5-3 (dashed yellow). As showed in Proposition 3. the first proximal step

with optimal step size must be at least as good as SAA with 𝑛 = 1 and the quality

of the proximal transient phase of convergence approximation seems to be related to

how much SAA outperforms the gradient transient phase. Note that in Figure 5-3d,

we have 𝑒SAA
𝑛 = +∞ for any 𝑛.

Mini-batching Let 𝑒*grad𝑛,𝑘 and 𝑒*prox𝑛,𝑘 represent the optimal errors of 𝑘 gradient and

proximal steps with batch size 𝑛. In particular we have 𝑒*grad1,𝑘 = 𝑒*grad𝑘 . The fact

that SAA with a batch of 𝑛 points is sometimes better (Figure 5-3a) than 𝑘 = 𝑛

proximal steps with 𝑛 = 1 point means that using a larger batch for proximal steps

is beneficial. Indeed, have:

𝑒*prox𝑛,1 ≤ 𝑒SAA
𝑛 , ∀𝑛 ≥ 1, ∀𝑒0 ≥ 0 (5.157)

209



(a) Same setting as Figure 5-3a

(b) Same setting as Figure 5-3d. Note the strong improvement cor-
responding to batch size 𝑛 = 8 for proximal.

Figure 5-4: Errors of the optimal schedule for proximal steps [𝑒*prox𝑘 ] and gradient
steps [𝑒*grad𝑘 ], and errors of SAA (dashed curve). We start with 𝑒0 = 104. We use
𝑛 ∈ {1, 2, 4, 8}. We compare the different errors on the scale of 𝑛𝑘, which corresponds
to the total number of samples seen by the algorithms, i.e., the number of steps 𝑘
times the number of samples per steps 𝑛 (𝑘 = 1 for SAA). On this scale, gradient steps
reach lower errors with smaller batches whereas proximal steps need bigger batches.
The figure uses the logarithmic scale on its axis.

210



this inequality comes from proposition 3 (b), and is due to the fact that a proximal

step with infinite step size is similar to SAA.

This means that doing one proximal step with a mini-batch 𝑛 can lead to a better

error than 𝑛 proximal steps with mini-batch 1, unlike the two special cases we saw

earlier.

This insight is confirmed and generalized in the simulations of Figure 5-4, where

the proximal steps (for fixed total number of samples 𝑛𝑘) reach lower errors when the

batch size 𝑛 is bigger, whereas gradient steps behave the opposite way.

We show formalize this result for gradient steps:

Theorem 2. For a fixed total number of samples, gradient steps reach smaller errors

with smaller batch sizes. Formally, for all 𝑁 ≥ 1, 𝑛 ≥ 1, 𝑘 ≥ 1 and 𝑒0 > 0 we have:

𝑒*grad𝑛,𝑘𝑁 ≤ 𝑒*grad𝑛𝑁,𝑘 (5.158)

Lemma 1. For all 𝑛 ≥ 1 and 𝑒 > 0, we have:

grad𝑛(grad(𝑒)) ≤ grad𝑛+1(𝑒) (5.159)

In other words, the optimal error for one step with a batch size of 𝑛 after a step with

a batch size of 1 is preferable to doing only one step with the 𝑛 + 1 samples together.

Proof of Lemma 1. From Eq.(5.37) we have:

grad(𝑒) = 𝑒
𝜎2
𝑎𝑒 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

(5.160)

grad𝑛(𝑒) = 𝑒
𝜎2
𝑎

𝑛
𝑒 +

𝜎2
𝑏

𝑛

(1 + 𝜎2
𝑎

𝑛
)𝑒 +

𝜎2
𝑏

𝑛

(5.161)

= 𝑒
𝜎2
𝑎𝑒 + 𝜎2

𝑏

(𝑛 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

(5.162)

If 𝜎2
𝑏 = 0, we are back to the study of Section 5.3.4 and the result is already proven

211



(see Remark 2). Otherwise, the following sequence of equivalences proves the lemma:

grad𝑛+1(𝑒) ≥ grad𝑛(grad(𝑒)) (5.163)

⇐⇒ 𝑒
𝜎2
𝑎𝑒 + 𝜎2

𝑏

(𝑛 + 1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

≥ 𝑒
𝜎2
𝑎𝑒 + 𝜎2

𝑏

(1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

𝜎2
𝑎𝑒

𝜎2
𝑎𝑒+𝜎2

𝑏

(1+𝜎2
𝑎)𝑒+𝜎2

𝑏
+ 𝜎2

𝑏

(𝑛 + 𝜎2
𝑎)𝑒

𝜎2
𝑎𝑒+𝜎2

𝑏

(1+𝜎2
𝑎)𝑒+𝜎2

𝑏
+ 𝜎2

𝑏

(5.164)

⇐⇒ (1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

(𝑛 + 1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

≥
𝜎2
𝑎𝑒

𝜎2
𝑎𝑒+𝜎2

𝑏

(1+𝜎2
𝑎)𝑒+𝜎2

𝑏
+ 𝜎2

𝑏

(𝑛 + 𝜎2
𝑎)𝑒

𝜎2
𝑎𝑒+𝜎2

𝑏

(1+𝜎2
𝑎)𝑒+𝜎2

𝑏
+ 𝜎2

𝑏

(5.165)

⇐⇒ (1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

(𝑛 + 1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

≥
𝜎2
𝑎𝑒

𝜎2
𝑎𝑒+𝜎2

𝑏

(1+𝜎2
𝑎)𝑒+𝜎2

𝑏
+ 𝜎2

𝑏

(𝑛 + 𝜎2
𝑎)𝑒

𝜎2
𝑎𝑒+𝜎2

𝑏

(1+𝜎2
𝑎)𝑒+𝜎2

𝑏
+ 𝜎2

𝑏

(5.166)

⇐⇒ (1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

(𝑛 + 1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏

≥ 𝜎2
𝑎𝑒(𝜎

2
𝑎𝑒 + 𝜎2

𝑏 ) + 𝜎2
𝑏 ((1 + 𝜎2

𝑎)𝑒 + 𝜎2
𝑏 )

(𝑛 + 1)𝑒(𝜎2
𝑎𝑒 + 𝜎2

𝑏 ) + 𝜎2
𝑏 ((1 + 𝜎2

𝑎)𝑒 + 𝜎2
𝑏 )

(5.167)

⇐⇒ ((1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏 )((𝑛 + 1)𝑒(𝜎2
𝑎𝑒 + 𝜎2

𝑏 ) + 𝜎2
𝑏 ((1 + 𝜎2

𝑎)𝑒 + 𝜎2
𝑏 )) (5.168)

≥ ((𝑛 + 1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏 )(𝜎2
𝑎𝑒(𝜎

2
𝑎𝑒 + 𝜎2

𝑏 ) + 𝜎2
𝑏 ((1 + 𝜎2

𝑎)𝑒 + 𝜎2
𝑏 )) (5.169)

⇐⇒ ((1 + 𝜎2
𝑎)𝑒 + 𝜎2

𝑏 )𝑛𝑒(𝜎2
𝑎𝑒 + 𝜎2

𝑏 ) ≥ 𝑛𝑒(𝜎2
𝑎𝑒(𝜎

2
𝑎𝑒 + 𝜎2

𝑏 ) + 𝜎2
𝑏 ((1 + 𝜎2

𝑎)𝑒 + 𝜎2
𝑏 ))

(5.170)

⇐⇒ (𝜎2
𝑎𝑒 + 𝜎2

𝑏 )2 + 𝑒(𝜎2
𝑎𝑒 + 𝜎2

𝑏 ) ≥ (𝜎2
𝑎𝑒 + 𝜎2

𝑏 )2 + 𝜎2
𝑏𝑒 (5.171)

⇐⇒ 𝜎2
𝑎𝑒

2 ≥ 0 (5.172)

Proof of Theorem 2. We prove the theorem by showing that it can be reduced to

Lemma 1.

If we define 𝑎′ = 𝑎𝑛, then

𝑎𝑛𝑁 =
1

𝑛𝑁

𝑛𝑁∑︁
𝑖=1

𝑎𝑤𝑖
=

1

𝑁

𝑁∑︁
𝑖=1

1

𝑛

𝑛∑︁
𝑗=1

𝑎𝑤𝑗+(𝑖−1)𝑁
=

1

𝑁

𝑁∑︁
𝑖=1

𝑎′𝑤′
𝑖

= 𝑎′𝑁 (5.173)

that is, 𝑎′𝑛, the average of 𝑛 independent samples of 𝑎′ has the same distribution as

𝑎𝑛𝑁 , the average of 𝑛𝑁 independent samples of 𝑎. Therefore, if we prove Theorem 2

212



with 𝑛 = 1, i.e.,

𝑒*grad1,𝑁𝑘 ≤ 𝑒*grad𝑁,𝑘 ∀𝑘,𝑁 ≥ 1. (5.174)

Then, by using 𝑎′ = 𝑎𝑛 we get

𝑒*grad𝑛,𝑁𝑘 ≤ 𝑒*grad𝑛𝑁,𝑘 ∀𝑘,𝑁, 𝑛 ≥ 1. (5.175)

. We will now use induction on 𝑘 to show that:

𝑒*grad1,𝑁 ≤ 𝑒*grad𝑁,1 ∀𝑁 ≥ 1, ∀𝑒0 ≥ 0

=⇒ 𝑒*grad1,𝑁𝑘 ≤ 𝑒*grad𝑁,𝑘 ∀𝑘 ≥ 1, ∀𝑁 ≥ 1, ∀𝑒0 ≥ 0.
(5.176)

This is trivial for 𝑘 = 1, suppose now that it is true for some 𝑘 ≥ 1

𝑒*grad1,𝑁 ≤ 𝑒*grad𝑁,1 ∀𝑁 ≥ 1, 𝑒0 ≥ 0 (5.177)

=⇒ (grad)(𝑁)(𝑒0) ≤ grad𝑁(𝑒0) ∀𝑁 ≥ 1, 𝑒0 ≥ 0 (5.178)

=⇒ (grad)(𝑁)((grad)(𝑁𝑘)(𝑒0)) ≤ grad𝑁((grad)(𝑁𝑘)(𝑒0)) ∀𝑁 ≥ 1, 𝑒0 ≥ 0 (5.179)

=⇒ (grad)(𝑁)((grad)(𝑁𝑘)(𝑒0)) ≤ grad𝑁((grad𝑁)(𝑘)(𝑒0)) ∀𝑁 ≥ 1, 𝑒0 ≥ 0 (5.180)

=⇒ (grad)((𝑘+1)𝑁)(𝑒0)) ≤ (grad𝑁)(𝑘+1)(𝑒0)) ∀𝑁 ≥ 1, 𝑒0 ≥ 0 (5.181)

where (5.179) is obtained by using the particular choice of 𝑒0 = (grad)(𝑁𝑘)(𝑒0). And

(5.180) follows from the induction hypothesis and the fact that 𝑒 → grad𝑁(𝑒) is an

increasing function. By induction, this proves (5.176). We then prove by induction

the following implication:

grad𝑁(grad(𝑒)) ≤ grad𝑁+1(𝑒) ∀𝑁 ≥ 1, 𝑒0 ≥ 0

=⇒ 𝑒*grad1,𝑁 ≤ 𝑒*grad𝑁,1 ∀𝑁 ≥ 1, 𝑒0 ≥ 0.
(5.182)

213



This is trivial for 𝑁 = 1, suppose that (5.182) is true for some 𝑁 ≥ 1. We get:

𝑒*grad1,𝑁 ≤ 𝑒*grad𝑁,1 ∀𝑒0 ≥ 0 (5.183)

=⇒ (grad)(𝑁)(𝑒0) ≤ grad𝑁(𝑒0) ∀𝑒0 ≥ 0 (5.184)

=⇒ (grad)(𝑁)(grad(𝑒0)) ≤ grad𝑁(grad(𝑒0)) ∀𝑒0 ≥ 0 (5.185)

=⇒ (grad)(𝑁+1)(𝑒0) ≤ grad𝑁+1(𝑒0) ∀𝑒0 ≥ 0 (5.186)

=⇒ 𝑒*grad1,𝑁+1 ≤ 𝑒*grad𝑁+1,1 ∀𝑒0 ≥ 0, (5.187)

where (5.186) is obtained by applying grad𝑁(grad(𝑒)) ≤ grad𝑁+1(𝑒). Therefore,

Lemma 1, together with (5.176) and (5.182) proves Theorem 2.

For proximal step, formulate the following conjecture, verified numerically but not

proven formally:

Conjecture 1. For an equivalent total number of samples, proximal steps reach

smaller errors with larger batch sizes. Formally, for all 𝑁 ≥ 1, 𝑛 ≥ 1, 𝑘 ≥ 1

and 𝑒0 > 0 we have:

𝑒*prox𝑛𝑁,𝑘 ≤ 𝑒*prox𝑛,𝑘𝑁 (5.188)

Following the same reasoning as the proof of Theorem 2, proving Conjecture 1

can be reduced to proving:

prox𝑛+1(𝑒) ≤ prox𝑛(prox(𝑒)) ∀𝑒 ≥ 0, 𝑛 ≥ 1 (5.189)

The experiments on Figure 5-4 show that mini-batching has a significant impact

on the transient phase of the algorithms. Nonetheless, Proposition 2 states that

asymptotically the choice of mini-batch size does not matter:

𝑒*grad𝑛,𝑘 ∼𝑘→+∞ 𝑒*prox𝑛,𝑘 ∼𝑘→+∞
𝜎2
𝑏

𝑛𝑘
∀𝑛 ≥ 1 (5.190)

Through the use of an optimal step schedule, we studied the differences between

214



proximal and gradient steps, showing that proximal steps can have a significant edge

in the transient phase, especially when mini-batching is used.

5.4 Benefits of Proximal: Ordinary Least Squares

We now compare the behavior of proximal and gradient steps on higher dimensions

convex quadratic optimization problems: ordinary least squares (OLS). This study is

empirical, and shows that our findings in 1D generalize to multiple dimensions. This

section will compare the algorithms with a similar setting of “optimal schedules”, and

the next section will focus on computational time.

5.4.1 Setting

-2 -1 0 1 2
X

-2

-1

0

1

2

y

= 0
= 0.5

(a) With 𝑑 = 1, impact of noise on 𝑦 given 𝑋
(note that 𝛽* = 0).

-4 -2 0 2 4
X1

-4

-2

0

2

4

X 2

m = 1
m = 10

(b) With 𝑑 = 2, visualizing the effect of the
condition number on the feature distribution
𝑋.

Figure 5-5: Examples of linear data distributions in our OLS setting. We vary the
distribution parameters 𝜎2

𝜖 (noise variance) and 𝑚 (condition number), and represent
100 random samples for each.

We introduce the OLS setting of our experiments. 𝑋𝑆 ∈ R𝑑 represents the data

features and 𝑦𝑆 ∈ R its labels. To simplify the notations, the dependence on 𝑆 will

215



be implicit and we will use 𝑋 := 𝑋𝑆 and 𝑦 = 𝑦𝑆

Given some linear coefficients 𝛽 ∈ R𝑑, we consider the mean squared error:

𝐹 (𝛽) =
1

2
E
[︁
(𝑋 ′𝛽 − 𝑦)

2
]︁

(5.191)

The distributions of 𝑋 and 𝑦 follow traditional OLS assumptions: independent

gaussian features and independent gaussian error. More precisely, we have:

∙ Each feature 1 ≤ 𝑖 ≤ 𝑑 has distribution 𝑋𝑖 ∼ 𝒩 (0, 𝜎2
𝑖 ), and each feature is

independent.

∙ The distribution of the labels is a linear combination of the features with gaus-

sian noise: 𝑦 = 𝑋𝛽* + 𝜖, where 𝜖 ∼ 𝒩 (0, 𝜎2
𝜖 ) is independent from 𝑋.

Putting everything together, we have:

𝑓(𝛽, 𝑆) =
1

2
(𝛽 − 𝛽*)′𝑋𝑋 ′(𝛽 − 𝛽*)− (𝜖𝑋 ′) (𝛽 − 𝛽*) +

1

2
𝜖2 (5.192)

𝐹 (𝛽) =
1

2
(𝛽 − 𝛽*)′E [𝑋𝑋 ′] (𝛽 − 𝛽*) +

𝜎2
𝜖

2
(5.193)

Our optimization algorithms are invariant by isometry of the decision space, so we

can translate the decision space by 𝛽* and set 𝛽* = 0. We obtain:

𝑓(𝛽, 𝑆) =
1

2
𝛽′𝑋𝑋 ′𝛽 − (𝜖𝑋 ′) 𝛽 +

1

2
𝜖2 (5.194)

Which corresponds to the general convex optimization setting of Section 5.2 with

𝐴𝑆 = 𝑋𝑋 ′, 𝑏𝑆 = 𝜖𝑋 and 𝛾𝑆 = 1
2
𝜖2.

In particular, when we have a mini-batch of size 𝑛, we have 𝐴𝑛 = 1
𝑛
𝑋 ′

𝑛𝑋𝑛 where

𝑋𝑛 ∈ R𝑛×𝑑 is the feature matrix of the mini-batch. That is, each row of 𝑋𝑛 is a

random independent draw of 𝑋. 𝑏𝑛 = 1
𝑛
𝜖′𝑛𝑋𝑛 where 𝜖𝑛 is the vector of 𝑛 independent

samples of 𝜖, and 𝛾𝑛 = 1
2𝑛
‖𝜖𝑛‖2.

𝐴 = E [𝑋𝑋 ′] is a positive semi-definite symmetric matrix, and is the Hessian of

𝐹 . As the features are centered and independent, 𝐴 is diagonal with coefficients

[𝜎2
𝑖 ]. Therefore the condition number of the optimization problem is 𝑚 =

max𝑖 𝜎
2
𝑖

min𝑖 𝜎2
𝑖
.

216



This setting generalizes to correlated features, as this can be reduced to the case of

independent features through isometries of the decision space.

In our experiment, to limit the number of parameters, we study the specific case

where the values 𝜎2
𝑖 are chosen to be regularly spread in the log scale around the

value 1: 𝜎2
𝑖 = 𝑚

𝑑−𝑖
𝑑−1

−0.5. That is, 𝑋 is uniquely defined by the value 𝑚. The fact that

the values 𝜎2
𝑖 are centered around 1 is without loss of generality, as we have seen in

Section 5.3.1 that we can multiply the cost function by a constant without affecting

our study.

Also similarly to the 1D case, we start with a random starting point in 𝛽0 ∈

R𝑑 such that each dimension is independently sampled from a normal distribution:

(𝛽0)𝑖 ∼ 𝒩 (0, 𝜎2
0).

Therefore, our simulations only depend on four parameters: the problem dimen-

sion 𝑑, the condition number 𝑚, the noise variance 𝜎2
𝜖 and the standard deviation of

the starting point 𝜎2
0. When compared with the 𝑑 = 1 case, 𝜎2

𝜖 will have a similar

role to 𝜎2
𝑏 , and 𝜎2

0 to 𝑒0.

5.4.2 Algorithms

In this OLS setting, we will also study proximal and gradient steps as well as SAA.

Step computation We apply the results of Section 5.2.2 to get the closed form of

our steps:

grad𝑛(𝛽, 𝜇) =

(︂
𝐼𝑑 − 𝜇

1

𝑛
𝑋 ′

𝑛𝑋𝑛

)︂
𝛽 + 𝜇

1

𝑛
𝜖′𝑛𝑋𝑛 (5.195)

prox𝑛(𝛽, 𝜇) =

(︂
𝐼𝑑 + 𝜇

1

𝑛
𝑋 ′

𝑛𝑋𝑛

)︂−1(︂
𝛽 + 𝜇

(︂
1

𝑛
𝜖′𝑛𝑋𝑛

)︂)︂
(5.196)

SAA(𝑛) =

(︂
1

𝑛
𝑋 ′

𝑛𝑋𝑛

)︂−1(︂
1

𝑛
𝜖′𝑛𝑋𝑛

)︂
(5.197)

Step Schedule Unfortunately, the optimal schedule setting of 𝑑 = 1 (see propo-

sition 1) does not hold in higher dimension. In order to still be able to mimic this

217



situation in a computationally tractable way, we choose the step schedules as follows:

𝜇𝑘 =
𝐴

𝐴
𝐵

+ (𝑘 − 1)
, (5.198)

with 𝐴 > 0 and 𝐵 > 0 constants to be optimized. In particular, 𝜇1 = 𝐵 and

𝜇𝑘 ∼𝑘→∞
𝐴
𝑘
. We choose these schedules as they match our theoretical results in 𝑑 = 1

and work well in practice [24]. In order to provide a fair comparison between gradient

and proximal steps, we will optimize 𝐴 and 𝐵 to find the “best” schedule.

We choose a (large) total number of steps 𝐾. For any choice of 𝐴 and 𝐵 we

will estimate the expected error of each step E [‖𝛽𝑘‖2]1≤𝑘≤𝐾 (similar to 𝑒*grad𝑘 and

𝑒*prox𝑘 from the 𝑑 = 1 case). To estimate these errors, we simulate a large number of

optimization sample paths up to step 𝐾 (100 in this work), with random starting point

𝛽0 and random mini-batches as described in Section 5.4.1. We then take the empirical

expectation of the error of each step to approximate E [‖𝛽𝑘‖2]1≤𝑘≤𝐾 . To choose the

value 𝐴 and 𝐵, we want to minimize the error of the last step: min𝐴,𝐵 E [‖𝛽𝐾‖2]. We

do this using grid-search over the parameters 𝐴 and 𝐵.

A limitation of this approach (as explored later in Section 5.4.3) is that the “opti-

mal” schedules depend on the choice of 𝐾. We compensate by choosing values as high

as we can: 𝐾 ≥ 10, 000. The different algorithms will also be compared sharing the

same "randomness", i.e. the same samples for the mini-batches and starting points.

5.4.3 Experiment

For a particular choice of parameters of our OLS setting, we study proximal and

gradient steps and discuss the impact and limitations of the choice of optimal step

schedule.

Standard Setting In order to study the impact of our four parameters 𝑑, 𝑚, 𝜎0 and

𝜎𝜖, we introduce a “standard” simulation setting with fixed values for each parameter:

𝑑 = 16, 𝑚 = 102, 𝜎2
0 = 1, and 𝜎2

𝜖 = 1. 𝑚 = 100 is a reasonable choice, it means that

their is a typical factor 10 between smallest feature and the largest one. 𝜎2
0 = 100

218



100 101 102 103 104

Samples ( = kn)

10 2

10 1

100

101

102

103

104

|
* |

2

SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

Figure 5-6: Error of the solution path for SAA, stochastic gradient and proximal
steps, with batch sizes 𝑛 = 1 and 𝑛 = 64, in the setting introduced in Section 5.4.1.
With 𝑑 = 16, 𝑚 = 100, 𝜎2

𝜖 = 1, 𝜎2
0 = 100. The x-axis compares the methods by the

number of samples processed, which is the number of steps 𝑘 times the batch size 𝑛.

means that starting point are closer to the optimal than in our 𝑑 = 1 experiments

(we had 𝜎2
0 = 104). In section 5.4.4, we will vary each parameter individually from

this setting to understand the sensitivity of our results to the parameters.

This standard case is shown in Figure 5-6. We show the error E [‖𝛽𝑘‖2] for each

step 𝑘, i.e., the distance from the optimal solution. As before we use 𝑘𝑛 for the x-axis

for a sample-by-sample comparison. Note that both axis are on a log scale. Therefore

a line with -1 slope indicates sub-linear convergence of the form E [‖𝛽𝑘‖2] ∼𝑘→+∞
𝐴
𝑘

with 𝐴 a positive constant.

SAA is the dotted yellow curve. It is only defined for 𝑛 ≥ 𝑑. It has typically

high error when 𝑛 is close to 𝑑, and is outperformed by the other algorithms that

can use their starting point to reduce the error. But for larger sample size it quickly

219



outperforms the mini-batch algorithms. In our simulations, it always asymptotically

converges in 𝑂( 1
𝑛
).

Proximal steps are shown with batch sizes of 𝑛 = 1 (thin green line) and 𝑛 = 64

(= 4𝑑) (thick purple line). The proximal path with batch 𝑛 always starts under

SAA(𝑛), which can help picture the equivalent paths for other batch sizes. Batch size

always accelerates the convergence of proximal steps in this setting.

Gradient steps are shown in dashed lines, for 𝑛 = 1 (thin blue) and 𝑛 = 64 (thick

orange). Gradient and proximal steps have the same asymptotic convergence, but the

intermediate convergence is in favor of proximal. For example, one need more than

2000 steps of gradient descent with 𝑛 = 1 for one step of proximal with 𝑛 = 64.

We recover our remark from the 𝑑 = 1 case that mini-batch size helps proximal

steps but hurts gradient steps.

Optimal Schedule Limitations It is important to also note that the “shape” of

the convergence curve of the stochastic methods do not always generalize for a higher

number of steps. Indeed, our step schedule is optimized for a precise number of steps

𝐾 and the whole path would look different for a higher number of steps. For example,

it may seem that the convergence of the proximal and gradient steps is not always

𝑂(1/𝑘) (whereas it should be), or that the proximal purple line and the green lines in

Figure 5-6 will intersect each-other for 𝑘 > 104, but this intuition is not correct here.

Indeed, the curves can be very different if we change the parameter 𝐾 of the

optimal schedule. Figure 5-7 shows this with the example of gradient paths. This

explains why we cannot generalize the “behavior” of the curves for higher 𝐾: the

green curve of the figure looks very good until we pass 𝐾 = 2048. All the simulations

in this study should be interpreted with this effect in mind. This is also the reason

why we are not able to define a truly optimal step schedule independently of 𝐾.

Step schedule sensitivity A notable difference between proximal and gradient

steps is their stability relative to the choice of step schedule. Figure 5-8 explores the

sensitivity of the step schedule. It is known that choosing step sizes that are too high

220



102.5 103.0 103.5 104.0

Samples ( = kn)

10 3

10 2

10 1

100

101

102

103

|
* |

2

K = 2048
K = 8192

Figure 5-7: Error of optimal schedule for gradient steps (𝑛 = 1), when choosing
𝐾 = 2048 (orange curve, 𝐾 corresponds to the first dashed blue line) and 𝐾 = 8192
(green, curve, second dashed blue line). Each schedule minimizes the error for a
specific number of steps 𝐾, and it can be seen that the paths differ significantly.
At 𝐾 = 2048 steps, the orange line is optimal, whereas the green line is optimal at
𝐾 = 8192 steps. I.e., there is not one path that is optimal at each iteration, but the
path significantly depends on the value 𝐾,

create a transient exponential divergence of gradient steps, whereas it just slightly

slows down proximal steps. Choosing step sizes that are too small actually affects the

asymptotic convergence rate, which becomes 𝑂( 1
𝑘𝛾

) with 𝛾 < 1 instead of 𝑂( 1
𝑘
).

Perhaps more importantly, the tuning process of the step schedule is much easier

for proximal steps: when the batch 𝑛 is not too small, we typically only need to

consider step schedules of the form 𝐴
𝐾

, therefore with one less parameter. This is

illustrated with the green line on Figure 5-8. Therefore larger batch sizes, on top

of making the optimization more efficient, effectively allow us to simplify the step

schedules and makes it easier to tune the proximal steps. This is not the case for

221



100 101 102 103 104

Samples ( = kn)

10 2

100

102

104

|
* |

2

SGD
SGD +
SGD -
prox
prox +
prox -
prox A

k

Figure 5-8: We vary the step schedule of the standard setting of Figure 5-6. We
modify the step schedules of the best gradient (𝑛 = 1, blue curves) and proximal
(𝑛 = 64, orange curves) paths to test their sensitivity. We display the original paths
(bold), the paths with step sizes multiplied by 10 (dashed) and the path with step
sizes divided by 10 (dotted). The thin grey path represents setting 𝐵 = +∞ in the
proximal step schedule and follows the optimal proximal path exactly. This shows
that we only need to find one parameter (𝐴) for the proximal step schedule, the
parameter 𝐵 is not required when 𝑛 is big enough. Proximal steps are much less
sensitive to the choice of step schedule than gradient steps.

222



gradient steps.

5.4.4 Parameter Analysis

Starting from the standard simulation introduced in 5.4.3, we vary the four parameters

𝜎2
𝑒 , 𝑚, 𝜎2

0 and 𝑑.

100 101 102 103 104

Samples ( = kn)

100

101

102

103

|
* |

2

SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

(a) 𝜎2
𝜖 = 100

100 101 102 103 104

Samples ( = kn)

10 4

10 3

10 2

10 1

100

101

|
* |

2
SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

(b) 𝜎2
𝜖 = 0.01

Figure 5-9: Varying the noise parameter 𝜎2
𝜖 with respect to the standard setting of

Figure 5-6 (𝜎𝜖 = 1).

Influence of the noise In Figure 5-9, we vary the noise parameter 𝜎2
𝜖 . High noise

(Figure 5-9a) makes all the algorithms more similar, as in the 𝑑 = 1 case when 𝑎

was deterministic (see Section 5.3.3. In the low noise setting (Figure 5-9b), proximal

steps have a clear edge on gradient steps.

Influence of the condition number Figure 5-10 varies the condition number

𝑚 of the problem. Figure 5-10b corresponds to the limit case of a problem that

is perfectly conditioned in expectation. Proximal steps nonetheless still outperform

gradient steps, mostly because the sampled cost are not perfectly conditioned even

if they are in expectation. Interestingly, as in 𝑑 = 1, all algorithms are equivalent in

the asymptotic regime.

In Figure 5-10a, we have a relatively ill-conditioned problem (the smallest features

are typically 1000 times smaller that the biggest ones). And similarly to the high

223



100 101 102 103 104

Samples ( = kn)
10 3

10 2

10 1

100

101

102

103

|
* |

2

SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

(a) 𝑚 = 1

100 101 102 103 104

Samples ( = kn)

100

101

102

103

|
* |

2

SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

(b) 𝑚 = 106

Figure 5-10: Varying the condition number 𝑚 with respect to the standard setting of
Figure 5-6 (𝑚 = 102).

noise case, it seem that the stochastic algorithms have trouble learning on some of

the dimensions, with an extremely slow convergence. Here, batching is the only thing

that can make convergence work as we need second-order information to help with

the conditioning, and makes the proximal steps extremely competitive.

100 101 102 103 104

Samples ( = kn)

10 2

10 1

100

101

|
* |

2

SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

(a) 𝜎2
0 = 1

100 101 102 103 104

Samples ( = kn)

10 2

100

102

104

106

|
* |

2

SGD (n = 1)
SGD (n = 64)
Prox (n = 1)
Prox (n = 64)
SAA

(b) 𝜎2
0 = 104

Figure 5-11: Varying the distribution of the starting point 𝛽0 ∼ 𝒩 (0, 𝜎2
0) with respect

to the base setting of Figure 5-6 (𝜎2
0 = 102).

Influence of the starting point Figure 5-11 changes the distribution of the start-

ing point: 𝛽0 ∼ 𝒩 (0, 𝜎2
0). Figure 5-11a shows a case where we start closer to the opti-

mal solution. Proximal still outperform gradient steps, but the difference is reduced.

224



Figure 5-10a has a further-away starting point. And in this situation, proximal

methods with a batch of the order of the problem’s dimension are not sensitive to the

distance of the starting point (it behaves similarly to Figure 5-6), and therefore the

error of the first proximal step with batch 𝑛 = 64 is close to the previous case. On

the other hand, gradient steps (and proximal with 𝑛 = 1) have a first convergence

phase that depends on the distance of the starting point and can be arbitrarily bad.

This is related to our study in 1D in Section 5.3.

100 101 102 103

Samples ( = kn)
10 2

10 1

100

101

102

103

|
* |

2

SGD (n = 1)
SGD (n = 16)
Prox (n = 1)
Prox (n = 16)
SAA

(a) 𝑑 = 4

100 101 102 103 104

Samples ( = kn)
10 2

10 1

100

101

102

103

104

|
* |

2

SGD (n = 1)
SGD (n = 256)
Prox (n = 1)
Prox (n = 256)
SAA

(b) 𝑑 = 64

Figure 5-12: Varying the dimension 𝑑 with respect to the base setting of Figure 5-6
(𝑑 = 16). Batch size 𝑛 is also scaled.

Influence of the dimension Figure 5-12 shows that most of the previous com-

ments apply regardless of the dimension. The only caveat is that for proximal to

outperform gradient significantly, the mini-batch size should scale with the dimen-

sion. Here we choose 𝑛 = 4𝑑. In other words, when the dimension increases, proximal

step with 𝑛 = 1 lose their edge over gradient steps, but mini-batching helps recover

the benefits of proximal steps.

5.5 Proximal Tractability

So far we compared the algorithms optimization efficiency, i.e. the relationship be-

tween the number of samples given to them and the reduction of the expected solution

225



error. This was useful to analyse their behavior in a way that was agnostic of their

implementation. But in terms of practical use, the computational time is extremely

important, indeed, a fast algorithm that is not the most efficient in terms of optimiza-

tion, can still process significantly more samples within a given time and therefore

lead to lower errors [24].

We will first look at the small dimensions, where computing proximal steps remains

surprisingly computationally competitive. In higher dimensions, we introduce an

approximate conjugate gradient algorithm to solve the proximal problem and get a

hybrid method that has the asymptotic speed of gradient steps, and the robustness

and mini-batching behavior of proximal steps.

5.5.1 Low Dimensions

Complexity From Section 5.4.2, we see that computing gradient and proximal

steps requires to compute:

grad𝑛(𝛽𝑘−1, 𝜇𝑘) = 𝛽𝑘−1 −
(︁𝜇𝑘

𝑛
(𝑋 ′

𝑛 (𝑋𝑛𝛽𝑘−1 − 𝑦𝑛))
)︁

(5.199)

prox𝑛(𝛽𝑘−1, 𝜇𝑘) = 𝛽𝑘−1 = 𝐴−1𝑏 with

⎧⎪⎨⎪⎩𝐴 = 1
𝜇𝑘
𝐼𝐷 + 1

𝑛
𝑋 ′

𝑛𝑋𝑛

𝑏 = 1
𝜇𝑘
𝛽𝑘−1 + 1

𝑛
𝑋 ′

𝑛𝑦𝑛

(5.200)

Therefore the gradient step computation is dominated by two matrix-vector com-

putations: 𝑋𝑛𝛽𝑘−1 and 𝑋 ′
𝑛 (𝑋𝑛𝛽𝑘−1 − 𝑦𝑛). These require 𝑂(𝑛𝑑) operations.

Proximal steps boil down to solving a linear system. Forming the matrix A requires

𝑂(𝑛𝑑2) for the matrix-matrix multiplication and solving the linear system using LU

decomposition is 𝑂(𝑑3), which gives a total complexity of 𝑂((𝑑 + 𝑛)𝑑2), much higher

than the gradient steps.

Implementation Details of implementation are crucial to compare the algorithms

with respect to time and make sure that the comparison is fair.

We coded high performance implementations of the algorithms in the computing

language Julia [20]. Julia uses OpenBLAS [135], an optimized library for linear

226



algebra, that can solve linear algebra problems (e.g., matrix multiplication, systems

of linear equations . . . ) with state-of-the-art algorithms that are specialized for each

hardware. We used the fastest version of each algorithm that we could find, and we

compared them on a laptop computer, following the steps of (5.199) and (5.200).

When using OpenBLAS, two effects limit the negative effect of proximal steps

having a high computational complexity. First, OpenBLAS uses parallelization when

advantageous, which favors the use of big mini-batches, which in turns favors proximal

steps (see Section 5.4.3). Another effect is that in small dimensions, the asymptotics

of the complexity analysis does not hold thanks to many software and hardware

optimization, which also limits the computational time of proximal steps.

10 5 10 4 10 3 10 2

time (seconds)
10 2

10 1

100

101

102

103

|
* |

2

SGD (n = 4)
SGD (n = 16)
SGD (n = 64)
SGD (n = 256)
prox (n = 4)
prox (n = 16)
prox (n = 64)
prox (n = 256)

Figure 5-13: Time comparison of the convergence of gradient and proximal steps.
We use the standard setting of Figure 5-6 (in particular, 𝑑 = 16). We represent the
optimal errors of the gradient (blue) and proximal (orange) algorithms, varying the
batch size 𝑛. Proximal steps become significantly more efficient when the batch size
is increased whereas the tradeoff of gradient steps is more subtle.

227



Results Using the standard setting from section 5.4.3, we compare gradient steps

with respect to computational time, studying the impact of the batch size 𝑛. Results

are presented in Figure 5-13.

The first thing we notice is that gradient steps computational time is 3 times faster

than the proximal steps, which makes them more competitive than the sample-by-

sample comparison. Surprisingly, increasing 𝑛 barely changes the computational time

of a step. This is mostly due to parallelization. This makes larger batch size much

more attractive than in our previous sample-based comparison (Figure 5-6. But the

optimization limitations of large batches compete with the gains: the optimal batch

size in this case is 𝑛 = 16.

Nonetheless, perhaps surprisingly, proximal steps computation is efficient enough

to be competitive, and their computational time does not seem to be too influenced

by the size of 𝑛 either. For small batch sizes, gradients steps have a clear edge, but

proximal steps become competitive with larger batch sizes. And the choice of 𝑛 is

easy: higher is better. Nonetheless, even if it does not appear clearly on this figure,

proximal steps will always be asymptotically slower. Indeed, when the step size goes

to zero, the proximal steps become equivalent to gradient step, and therefore the

computational overhead is not justified. We will see in the next section how we can

use this fact to our advantage in higher dimensions.

5.5.2 High Dimensions, the Ap-prox Algorithm

When increasing the dimension, the optimized linear algebra algorithms are less ef-

ficient and memory requirements can prevent the use of large batch size 𝑛. On the

other hand, the conditioning of the problem can worsen, which helps proximal steps.

In Figure 5-14, we can compare the gradient (blue) and proximal (orange) errors.

These behave similarly to the lower dimension case. But ideally, we would like an

algorithm that has the advantages of proximal steps (robustness to the step sched-

ule, easy choice of the parameter 𝑛, good transient phase of convergence), while also

having the asymptotic speed of gradient steps and their performance with small 𝑛.

228



10 4 10 3 10 2 10 1

time (seconds)
10 3

10 2

10 1

100

101

102

|
* |

2

SGD n=32
prox n=32
n=128
n=512
n=2048
ap-prox n=32
n=128
n=512
n=2048

Figure 5-14: Time comparison of the convergence of gradient step and proximal step.
We use the standard setting of Figure 5-6, but we increase the problem dimension
to 𝑑 = 128. We represent the optimal error of the gradient, with the batch size
that gave the best results (blue). We also add the proximal steps (orange) as well as
the steps of the ap-prox algorithm for various batch size 𝑛. The ap-prox algorithm
shares the good characteristics of both gradient steps (speed when 𝑛 is small, and
asymptotic gradient behavior and speed) and proximal steps (strong improvement in
the transient phase when 𝑛 is large).

229



Proximal Approximation When 𝜇𝑘 becomes small, the condition number of the

optimization problem (5.200) improves. In fact, proximal steps will become equivalent

to gradient steps as 𝜇𝑘 → 0. Ideally, we would like the computational time (5.200)

to decrease as the step size diminishes, and ultimately to be no slower than the time

of a gradient step. This way we could get a good tradeoff between the performance

of early proximal steps with large batches, with the speed of gradient steps in the

asymptotic regime. But the computational time of (5.200) to optimality typically

does not decrease as much with the step-size when using linear algebra openBLAS

solvers. We need an algorithm that has this property.

The conjugate gradient algorithm can be used to solve (5.200), and it is guaranteed

to converge in 𝑑 steps (not taking account numerical errors). It also provides the value

of the residual at each iteration, and therefore can be stopped early if the residual

is small enough. Interestingly, the first conjugate iteration is a line minimization of

the proximal cost in the direction of the gradient. Therefore, if we perform only one

step, the solving time is of the order of a gradient computation.

The ap-prox algorithm We solve approximately the proximal step using the con-

jugate gradient algorithm with a fixed tolerance 𝜂 > 0, and we call this algorithm

ap-prox. We detail our full implementation in Algorithm 5. The algorithm always

does at least one conjugate step, and then keeps doing conjugate steps until the

residual is small enough.

Choosing the tolerance 𝜂 How to choose 𝜂? In practice the choice is quite easy

and does not depend on the step 𝑘. We confirm this theoretically.

Using (5.200), the residual is of a solution 𝛽𝑘+1 for the proximal step 𝑘 + 1 is:

𝑅(𝛽𝑘+1) = ‖𝑟(𝛽𝑘+1)‖2 = ‖( 𝑛

𝜇𝑘

𝐼𝑑 + 𝑋 ′
𝑛𝑋𝑛)𝛽𝑘+1 − (

𝑛

𝜇𝑘

𝛽𝑘 + 𝑋 ′
𝑛𝑦𝑛)‖2 (5.201)

where 𝛽𝑘+1 is the approximate solution to the proximal optimization problem :

min
𝛽𝑘+1

1

2
𝛽𝑘+1𝐴𝛽𝑘+1 − 𝛽𝑘+1𝑏 (5.202)

230



Algorithm 5 Conjugate - proximal iteration of the ap-prox algorithm. This is an
early-stopped conjugate gradient descent to solve min𝛽𝑘+1

1
2
𝛽𝑘+1𝐴𝛽𝑘+1 − 𝛽𝑘+1𝑏 where

𝐴 = 𝑛
𝜇𝑘
𝐼𝑑 + 𝑋 ′

𝑛𝑋𝑛 and 𝑏 = 𝑛
𝜇𝑘
𝛽𝑘 + 𝑋 ′

𝑛𝑦𝑛. Which corresponds to the formulation of
the proximal step of size 𝜇𝑘 starting from 𝛽𝑘. This is equivalent to solving the system
𝐴𝛽𝑘+1 = 𝑏.
Require:

A data mini-batch 𝑋𝑛 and 𝑦𝑛.
A step size 𝜇𝑘.
A previous solution 𝛽𝑘.
A tolerance value 𝜂.

Ensure:
Yields 𝛽𝑘+1 such that 𝑅 = ‖𝑟‖2 = ‖𝐴𝛽𝑘+1 − 𝑏‖2 ≤ 𝜂.

We will update a solution 𝛽𝑘+1 ∈ R𝑑 using conjugate gradient steps.
𝑟 ∈ R𝑑 will be maintained to be the residual: 𝑟 = 𝐴𝛽𝑘+1 − 𝑏
𝑝 ∈ R𝑑 will represent the conjugate gradient direction.

1: 𝛽𝑘+1 ← 𝛽𝑘. ◁ initialize with the previous solution.
2: 𝑟 ← 𝑋 ′

𝑛(𝑦𝑛 −𝑋𝑛𝛽𝑘+1) ◁ value of 𝑟 for 𝛽𝑘+1 = 𝛽𝑘

3: 𝑝← 𝑟. ◁ 𝑝 starts as the gradient value, which corresponds to 𝑟
4: 𝐴𝑝← 𝑛

𝜇𝑘
𝑝 + (𝑋 ′

𝑛(𝑋𝑛𝑝)) ◁ precompute the multiplication 𝐴𝑝

5: 𝑅← ‖𝑟‖2.
6: 𝛼 = 𝑅

𝑝′(𝐴𝑝)
◁ 𝛼 is the step size in the conjugate direction

7: 𝛽𝑘+1 = 𝛽𝑘+1 + 𝛼𝑝 ◁ first conjugate step
8: 𝑟 = 𝑟 − 𝛼𝐴𝑝 ◁ update residual
9: 𝑅old = 𝑅 ◁ save previous value of 𝑅 for later use

10: 𝑅 = ‖𝑟‖2
11: while 𝑅 > 𝜂 do ◁ keep doing steps if residual is too big
12: 𝑝 = 𝑟 + 𝑅

𝑅old
𝑝. ◁ update the conjugate direction

13: 𝐴𝑝 = 𝑛
𝜇𝑘
𝑝 + (𝑋 ′

𝑛(𝑋𝑛𝑝))

14: 𝛼 = 𝑅
𝑝′(𝐴𝑝)

15: 𝛽𝑘+1 = 𝛽𝑘+1 + 𝛼𝑝
16: 𝑟 = 𝑟 − 𝛼𝐴𝑝
17: 𝑅old = 𝑅
18: 𝑅 = ‖𝑟‖2

return 𝛽𝑘+1

231



with 𝐴 = 𝑛
𝜇𝑘
𝐼𝑑 + 𝑋 ′

𝑛𝑋𝑛 and 𝑏 = 𝑛
𝜇𝑘
𝛽𝑘 + 𝑋 ′

𝑛𝑦𝑛. Let 𝛽*
𝑘+1 be the optimal solution to

this problem, i.e., we have 𝑅(𝛽*
𝑘+1) = 0 from .

Therefore, subtracting 𝑟(𝛽*
𝑘+1) = 0 from (5.201), we obtain:

𝑅(𝛽𝑘+1) = ‖( 𝑛

𝜇𝑘

𝐼𝑑 + 𝑋 ′
𝑛𝑋𝑛)(𝛽𝑘+1 − 𝛽*

𝑘+1)‖2 (5.203)

We also compute the residual of the starting point 𝑅(𝛽𝑘):

𝑅(𝛽𝑘) = ‖( 𝑛

𝜇𝑘

𝐼𝑑 + 𝑋 ′
𝑛𝑋𝑛)𝛽𝑘 − (

𝑛

𝜇𝑘

𝛽𝑘 + 𝑋 ′
𝑛𝑦𝑛)‖2 (5.204)

= ‖𝑋 ′
𝑛(𝑋𝑛𝛽𝑘 − 𝑦𝑛)‖2 (5.205)

As we want each step to make progress, we should have 𝑅(𝛽𝑘+1) ≤ 𝜂 small com-

pared to 𝑅(𝛽𝑘). Therefore we want to choose 𝜂

𝜂 < ‖𝑋 ′
𝑛 (𝑋𝑛𝛽𝑘 − 𝑦𝑛)‖2 (5.206)

= ‖𝑋 ′
𝑛 (𝑋𝑛 (𝛽𝑘 − 𝛽*)−𝑋 ′

𝑛𝜖𝑛)‖2 (5.207)

≤ ‖𝑋 ′
𝑛(𝑋𝑛 (𝛽𝑘 − 𝛽*)‖2 + ‖𝑋 ′

𝑛𝜖𝑛‖
2 (5.208)

Therefore, 𝜂 should be chosen to be small in comparison with E [‖𝑋 ′
𝑛𝜖𝑛‖2], and

can be reasonably chosen independently from 𝑘.

ap-prox results Figure 5-14 presents the iterations of the ap-prox algorithm (in

green). It can be seen that these steps first behave like the proximal steps, and

smoothly transition to the behavior of gradient steps, as the step size diminishes.

The algorithm performs comparatively or better to both gradient and proximal steps

no matter what 𝑛 is used. It also has the asymptotic behavior of gradient steps.

Figure 5-15 shows the number of conjugate steps that were performed for the

iterations of ap-prox presented in Figure 5-14. They behave as intended: a large

number of conjugate step per batch at first, with more steps when the batch is larger,

and then we converge to one step asymptotically.

A limit of the ap-prox algorithm is the efficiency of the first step. Indeed, when

232



100.0 100.5 101.0 101.5 102.0

steps (k)

1

2

3

5

10

20

m
ea

n 
nu

m
be

r o
f c

on
ju

ga
te

 st
ep

s ap-prox (n=32)
n=128
n=512
n=2048

Figure 5-15: We show the average number of conjugate steps that were performed by
the ap-prox algorithm for each iteration in the experiments of Figure 5-14

the data batch is large enough and the starting point is far from the optimal solution,

a large number of conjugate steps can be needed for the first step. This is not

efficient as a full proximal step is faster in this case (see Figure 5-14): there are better

algorithm than vanilla conjugate gradient descent to solve a linear system. Therefore,

we recommend using a full proximal step for the first step when the mini-batch 𝑛 > 𝑑.

In terms of complexity, using Algorithm 5, computing 𝑘 conjugate steps takes roughly

the same time as 𝑘 + 1 gradient step computations (the first step is more expensive

due to the line minimization).

233



234



Chapter 6

The Price of Interpretability

6.1 Introduction

Today, predictive models are used in an increasingly high-stakes set of applications,

from bail decisions in the criminal justice system [11, 82] to treatment recommen-

dations in personalized medicine [17]. As the stakes have risen, so has the negative

impact of incorrect predictions, which could be due to a poorly trained model or to

undetected confounding patterns within the data itself [99].

Furthermore, as people start to feel the influence of algorithms in their daily life,

many want to understand the reasons for the decisions that affect them the most, from

cancer diagnoses to parole decisions to loan applications. Many governments now

recognize a “right to explanation” for significant decisions, for instance as part of the

European Union’s General Data Protection Regulation [64]. However, many state-of-

the-art machine learning methods, including random forests and neural networks [29,

60], are black boxes: their complex structure makes it difficult for humans, including

domain experts, to understand their predictive behavior.

6.1.1 Interpretable Machine Learning

According to Breiman, machine learning has two objectives: prediction, i.e., deter-

mining the value of the target variable for new inputs, and information, i.e., under-

235



standing the natural relationship between the input features and the target variable

[30]. Studies have shown that many decision makers exhibit an inherent distrust of

automated predictive models, even if they are proven to be more accurate than hu-

man forecasters [52]. One way to overcome “algorithm aversion” is to give decision

makers agency to modify the model’s predictions [53]. Another is to provide them

with understanding.

Thus, model interpretability, and its tradeoff with predictive accuracy, are of sig-

nificant interest to the machine learning community [59]. However, a major challenge

in this line of research is that the very concept of interpretability is hard to define

and even harder to quantify [89]. Many definitions of interpretability have a “know

it when you see it" aspect which makes quantitative analysis difficult, though several

recent works [54, 63] have introduced new paradigms that could help overcome the

ad hoc nature of existing approaches.

Though interpretability remains a loosely-defined concept, there has been exten-

sive research on forgoing complex black box models in favor of more interpretable

models. Decision trees [28, 15] are considered interpretable for their discrete structure

and graphical visualization, as are close relatives including rule lists [86, 144], decision

sets [84], and case-based reasoning [80]. Other approaches include generalized addi-

tive models [90], i.e., linear combinations of single-feature models, and score-based

methods [133], where integer point values for each feature can be summed up into a

final “score”.

In the case of linear models, interpretability often comes down to sparsity (small

number of nonzero coefficients), a topic of extensive study over the past twenty years

[73]. Sparse regression models can be trained using heuristics such as LASSO [131],

stagewise regression [130] or least-angle regression [57], or scalable mixed-integer ap-

proaches [18, 19].

Many practitioners are hesitant to give up the high accuracy of black box models in

the name of interpretability, and prefer to construct ex post explanations for a model’s

predictions. Some approaches create a separate explanation for each prediction in the

data-set, e.g. by approximating the nonlinear decision boundary of a neural network

236



with a hyperplane [118]. Others define metrics of feature importance to quantify the

effect of each feature in the overall model [60, 46].

Finally, some approaches seek to approximate a large, complex model such as

a neural network or a random forest with a simpler one – a decision tree [5], two-

level rule list [85], or smaller neural network [31]. Such global explanations can help

human experts detect systemic biases or confounding variables. However, even if

these approximations are almost as accurate as the original model, they may have

very different behavior on some inputs and can thus provide a misleading assessment

of the model’s behavior [63].

6.1.2 Contributions

The contributions of this chapter can be summarized as follows:

∙ We introduce the notion of an interpretable path, which models the sequential

reading of a machine learning model by a user as a sequence of models of

increasing complexity.

∙ Motivated by existing approaches, we introduce conditions that coherent inter-

pretability metrics (or losses) must satisfy, and verify the coherence of typical

metrics.

∙ We show that there exists a natural parametric family of coherent interpretabil-

ity metrics on the space of interpretable paths that can be extended to the space

of models. We demonstrate that the proposed interpretability metric general-

izes a number of proxies for interpretability from the literature, such as sparsity

in linear models and number of splits for decision trees, and also encompasses

other desirable characteristics of interpretability.

∙ We provide a general optimization formulation to compute the tradeoff between

interpretability and predictive accuracy (price of interpretability) and apply it

to several different models.

237



∙ We explore the implications of our framework in a variety of examples, for which

we propose exact mixed-integer formulations and scalable local improvement

heuristics to study the price of interpretability on real and synthetic data-sets.

6.2 A Sequential View of Model Construction

6.2.1 Selecting a Model

Most machine learning problems can be viewed through the lens of optimization.

Given a set of models ℳ, each model 𝑚 ∈ ℳ is associated with a cost 𝑐(𝑚) ≥ 0,

typically derived from data, representing the performance of the model on the task at

hand (and potentially including a regularization term). Training a machine learning

model means choosing the appropriate 𝑚 fromℳ (for example the one that minimizes

𝑐(𝑚)). To make this perspective more concrete, we will use the following examples

throughout the chapter.

Linear models. Given the feature matrix 𝑋 ∈ R𝑛×𝑑 of a data-set of size 𝑛 with

feature space in R𝑑 and the corresponding vector of labels 𝑦 ∈ R𝑛, a linear model

corresponds to a set of linear coefficients 𝛽 ∈ R𝑑. In this example, ℳ = R𝑑, and

the cost 𝑐(·) depends on the application: for ordinary least squares (OLS), 𝑐(𝛽) =

(1/𝑛)‖𝑋𝛽 − 𝑦‖2 (mean squared error).

Classification trees (CART). In this case, each model corresponds to a binary

decision tree structure [28], soℳ is the set of all possible tree structures of any size.

Given a tree 𝑡 ∈ℳ and an input 𝑥 ∈ R𝑑, let 𝑡(𝑥) designate the tree’s estimate of the

corresponding label. Then a typical performance metric 𝑐(𝑡) is the number of misclas-

sified points. If we have a data-set with 𝑛 points (𝑥1, · · · , 𝑥𝑛) ∈ (R𝑑)𝑛 associated with

classification labels (𝑦1, · · · , 𝑦𝑛) ∈ {0, 1}𝑛 then we have 𝑐(𝑡) =
∑︀𝑛

𝑖=1 1(𝑡(𝑥𝑖) ̸= 𝑦𝑖).

Hierarchical clustering. We consider the standard hierarchical clustering problem

for a data-set 𝒟 of 𝑛 points in dimension 𝑑. Our model space ℳ is the set of

238



all partitions of the data-set, formally ∪𝑛𝐾=1{(𝐴1, . . . , 𝐴𝐾) : 𝑖 ̸= 𝑗 ⇒ 𝐴𝑖 ∩ 𝐴𝑗 =

∅,∪𝐾𝑖=1𝐴𝑖 = 𝒟}. To evaluate a partition, we can use the within-cluster sum of squares

𝑐(𝐴1, . . . , 𝐴𝐾) =
∑︀𝐾

𝑘=1

∑︀
𝑥𝑖∈𝐴𝑘

‖𝑥𝑖 − 𝜇𝑘‖2, where 𝜇𝑘 =
∑︀

𝑥𝑖∈𝐴𝑘
𝑥𝑖/|𝐴𝑘| is the centroid

of cluster 𝐴𝑘.

6.2.2 Interpretable Steps

While the performance or accuracy of a model is well-defined, its interpretability is

more difficult to grasp and quantify. For our guiding examples, typical proxies include

sparsity in linear models [18], a small number of nodes in a classification tree [15], or

a small number of partitions.

As we try to rationalize why these models are considered more interpretable, one

possible approach is to consider how humans “read” these models. For example, a

linear model is typically introduced coefficient by coefficient, a tree is typically read

node by node from the root to the leaves, and clusters are typically examined one

by one. During this process, we build a model that is more and more complex.

In other words, the human process of understanding a model can be viewed as its

decomposition into simple building blocks.

We introduce the notion of an interpretable step to formalize this sequential pro-

cess. For every model 𝑚 ∈ ℳ, we define a step neighborhood function 𝒮 that

associates each model 𝑚 to the set of models 𝒮(𝑚) ⊆ℳ that are one step away from

𝑚. In other words, 𝑚′ is one interpretable step away from 𝑚 if and only if 𝑚′ ∈ 𝒮(𝑚).

Interpretable steps represent simple model updates that can be chained to build more

complex models.

For linear models, one possible interpretable step is adding a feature. That is,

given some linear coefficients 𝛽, an interpretable step can only change at most one

coefficient 𝛽𝑖 that was previously set to zero (𝛽𝑖 = 0). For CART, an interpretable step

could be adding a split to an existing tree, i.e. 𝑡′ ∈ 𝒮(𝑡) if 𝑡′ has the same structure

and splits as 𝑡, except that we can add one new split on one of the leaves of 𝑡. For

clustering, an interpretable step could be splitting one cluster into two, therefore

adding one additional cluster. These three examples are illustrated in Figure 6-1.

239



Choosing the step neighborhood function 𝒮 is a modeling choice and for the

examples considered, there may be many other ways to define it. To simplify the

analysis, we impose that 𝒮(𝑚) ̸= ∅ for all 𝑚 (there must always be a feasible next

step from any model), which can trivially be satisfied by ensuring 𝑚 ∈ 𝒮(𝑚) (an

interpretable step can involve no changes to the model).

Figure 6-1: Illustration of the interpretable path framework with the three examples
introduced in Section 6.2.1: (a) is our linear model setting; (b) corresponds to the
classification trees (CART); (c) to the clustering setting (in 2 dimensions). For each
space of model, we illustrate an example of interpretable path following the choice of
steps introduced in Section 6.2.2. Each path has 3 steps: 𝑚1, 𝑚2 and 𝑚3.

Given the choice of an interpretable step 𝒮, we can define an interpretable path of

length 𝐾 as a sequence of 𝐾 models 𝑚 = (𝑚1, · · · ,𝑚𝐾) such that 𝑚𝑘 ∈ 𝒮(𝑚𝑘−1) for

all 1 ≤ 𝑘 ≤ 𝐾, i.e., a sequence of interpretable steps starting from a base model 𝑚0.

The choice of 𝑚0, the “simplest” model, is usually obvious: in our examples, 𝑚0 could

be a linear model with 𝛽 = 0, an empty classification tree, or a cluster containing all

data points. Given the model spaceℳ, we call 𝒫𝐾 the set of all interpretable paths

of length 𝐾 and 𝒫 = ∪∞
𝐾=0𝒫𝐾 the set of all interpretable paths of any length.

Let us consider an example to build intuition about interpretable paths. The

240



iris data-set is a small data-set often used to study classification trees. It records

the petal length and width and sepal length and width of various iris flowers, along

with their species (setosa, versicolor and virginica). For simplicity, we only consider

two of the four features (petal length and width) and subsample 50 total points from

two of the three classes (versicolor and virginica).

We define an interpretable step as splitting one leaf node into two. Given the

iris data-set, we consider two classification trees 𝑡good and 𝑡bad. Both trees have

a depth of 2, exactly 3 splits, and a misclassification cost of 2. However, when we

consider interpretable paths leading to these two trees, we notice some differences.

An interpretable path 𝑡bad leading to 𝑡bad is shown in Figure 6-2, and an interpretable

path 𝑡good leading to 𝑡good is detailed in Figure 6-3.

For 𝑡bad, the first split results in an intermediate tree with a high classification

error: the first split is less “intuitive”. In contrast, the first split of 𝑡good gives a fairly

accurate intermediate tree when considering only the first split. We will introduce

a way to formally pose and answer the problem of which of these two paths is more

interpretable.

6.3 The Tradeoffs of Interpretability

The aim of this section is to define an interpretability loss ℒ(𝑚) for all interpretable

paths 𝑚 ∈ 𝒫 such that a model 𝑚 is considered “more interpretable” than a model

𝑚′ if and only if ℒ(𝑚) < ℒ(𝑚′).

6.3.1 From paths to models

Defining a loss function for the interpretability of a path is important because it

can naturally lead to an interpretability loss function on the space of models. More

precisely, given a path interpretability loss function ℒ, we can assume that more

241



0.00 0.25 0.50 0.75 1.00
Petal length

0.00

0.25

0.50

0.75

1.00

Pe
ta

l w
id

th

versicolor
virginica

width ≤ 0.37
FT

virginicaversicolor

virginicaversicolorversicolor virginica

(a) 7 misclassified points

0.00 0.25 0.50 0.75 1.00
Petal length

0.00

0.25

0.50

0.75

1.00

Pe
ta

l w
id

th

versicolor
virginica

width ≤ 0.37
FT

width ≤ 0.5versicolor

virginicaversicolorversicolor virginica

(b) 4 misclassified points

0.00 0.25 0.50 0.75 1.00
Petal length

0.00

0.25

0.50

0.75

1.00

Pe
ta

l w
id

th

versicolor
virginica

width ≤ 0.37
FT

width ≤ 0.5length ≤ 0.5

virginicaversicolorversicolor virginica

(c) 2 misclassified points

Figure 6-2: Visualization of an interpretable path leading to 𝑡bad (shown on the right).

242



0.00 0.25 0.50 0.75 1.00
Petal length

0.00

0.25

0.50

0.75

1.00

Pe
ta

l w
id

th

versicolor
virginica

width ≤ 0.5
FT

versicolor virginica

virginicaversicolorversicolor virginica

(a) 4 misclassified points

0.00 0.25 0.50 0.75 1.00
Petal length

0.00

0.25

0.50

0.75

1.00

Pe
ta

l w
id

th

versicolor
virginica

width ≤ 0.5
FT

versicolor length ≤ 0.5

virginicaversicolorversicolor virginica

(b) 3 misclassified points

0.00 0.25 0.50 0.75 1.00
Petal length

0.00

0.25

0.50

0.75

1.00

Pe
ta

l w
id

th

versicolor
virginica

width ≤ 0.5
FT

length ≤ 0.5length ≤ 0.47

virginicaversicolorversicolor virginica

(c) 2 misclassified points

Figure 6-3: Visualization of an interpretable path leading to 𝑡good (shown on the
right).

243



interpretable paths lead to more interpretable models, and obtain

ℒ(𝑚) =

⎧⎪⎨⎪⎩∞, if 𝒫(𝑚) = ∅,

min𝑚∈𝒫(𝑚) ℒ(𝑚), otherwise,
(6.1)

where 𝒫𝐾(𝑚) = {𝑚 ∈ 𝒫𝐾 ,𝑚𝐾 = 𝑚} designates the set of interpretable paths of

length 𝐾 leading to 𝑚, and 𝒫(𝑚) = ∪∞𝐾=0𝒫𝐾(𝑚) designates the set of all interpretable

paths leading to 𝑚. In other words, the interpretability loss of a model 𝑚 is the

interpretability loss of the most interpretable path among all the paths that lead to

𝑚.

As an example, consider the following path interpretability loss function, which

we call path complexity and define as ℒcomplexity(𝑚) = |𝑚| (number of steps in the

path). From (6.1) we can then define the interpretability loss of a given model 𝑚 as

ℒcomplexity(𝑚) = min
𝑚∈𝒫(𝑚)

|𝑚|,

which corresponds to the minimal number of interpretable steps required to reach 𝑚.

In the context of the examples from Section 6.2, the function ℒcomplexity recovers

typical interpretability proxies. For linear models, ℒcomplexity(𝛽) = ‖𝛽‖0 is the sparsity

of the model (number of non-zero coefficients). For a classification tree 𝑡, ℒcomplexity(𝑡)

is the number of splits. In a clustering context, ℒcomplexity(𝐴1, · · · , 𝐴𝐾) = 𝐾 is just the

number of clusters. It is therefore reasonable to refer to this candidate loss function

as the model complexity.

A fundamental problem of interpretable machine learning is finding the highest-

performing model at a given level of interpretability [30]. Defining an interpretability

loss function ℒ on the space of models ℳ is important because it allows us to for-

mulate this problem generally as follows:

min
𝑚∈ℳ

𝑐(𝑚) s.t. ℒ(𝑚) ≤ ℓ, (6.2)

where ℓ is the desired level of interpretability. Problem (6.2) produces models on

244



the Pareto front of accuracy and interpretability. If we compute this Pareto front by

solving problem (6.2) for any ℓ, then we can mathematically characterize the price of

interpretability of a particular class of models on a particular data-set, making the

choice of a final model easier.

In the case of model complexity ℒcomplexity, for ℓ = 𝐾 problem (6.2) can be written

as

min
𝑚∈𝒫𝐾

𝑐(𝑚𝐾). (6.3)

Problem (6.3) generalizes existing problems in interpretable machine learning:

best subset selection (𝐿0-constrained sparse regression) for linear models [18], finding

the best classification tree of a given size [15], or finding the 𝐾 best possible clusters

in a hierarchical clustering setting.

Thus, the framework of interpretable paths naturally gives rise to a general defi-

nition of model complexity via the loss function ℒcomplexity, and our model generalizes

many existing approaches. By some counts, however, model complexity remains an

incomplete interpretability loss. For instance, it does not differentiate between the

trees 𝑡good and 𝑡bad: both models have a complexity of 3 because they can be reached

in three steps. More generally, ℒcomplexity does not differentiate between paths of the

same length, or between models that can be reached by paths of the same length.

6.3.2 Incrementality

In the decision tree example from Figures 6-2 and 6-3, we observed that the interme-

diate trees leading to 𝑡good were more accurate than the intermediate trees leading to

𝑡bad. Evaluating the costs 𝑐(𝑚𝑘) of intermediate models along a path 𝑚 may provide

clues as to the interpretability of the final model.

Consider the following toy example, where the goal is to estimate the age of a

child given their height and weight. We create a synthetic data-set with normalized

features 𝑋Height and 𝑋Weight and centered labels 𝑦Age. The features 𝑋Height and 𝑋Weight

have correlation 𝜌 = 0.9 and are both positively correlated with the objective. Solving

245



the OLS problem yields:

𝑦Age = 2.12 ·𝑋Height − 0.94 ·𝑋Weight + 𝜀, (6.4)

with 𝜀 the error term. The mean squared error (MSE) of this optimal model 𝛽* is

𝑐(𝛽*) = E [𝜀2] = 0.25.

As in Section 6.2, we define an interpretable step to be the addition of a feature to

the regression model, keeping all other coefficients constant. In this case, two different

interpretable paths 𝑚,𝑚′ ∈ 𝒫(𝛽*) lead to model (6.4), depending on which feature

is added first:⎧⎪⎨⎪⎩𝑚1 : 2.12 ·𝑋Height

𝑚2 : 2.12 ·𝑋Height − 0.94 ·𝑋Weight,

or

⎧⎪⎨⎪⎩𝑚′
1 : −0.94 ·𝑋Weight

𝑚′
2 : 2.12 ·𝑋Height − 0.94 ·𝑋Weight.

(6.5)

Which of 𝑚 or 𝑚′ is more interpretable? Both verify 𝑐(𝑚2) = 𝑐(𝑚′
2) = 0.25,

but 𝑐(𝑚1) = 1.13 < 𝑐(𝑚′
1) = 4.76. Indeed, 𝑚′

1 is a particularly inaccurate model, as

weight is actually positively correlated with age. However, when using the complexity

loss ℒcomplexity, both of these paths are considered equally interpretable.

As discussed in Section 6.2, an interpretable path 𝑚 leading to model 𝑚 can be

viewed as modeling how we can build the final model in a sequence of easily under-

standable steps. The costs of intermediate models should play a role in quantifying

the interpretability loss of a path; higher costs should be penalized.

One way to ensure that every step of an interpretable path adds value is a greedy

approach, where the next model at each step is chosen by minimizing the cost 𝑐(·):

𝑚greedy
𝑘+1 ∈ arg min

{︁
𝑐(𝑚), 𝑚 ∈ 𝒮(𝑚greedy

𝑘 )
}︁
∀𝑘 ≥ 1. (6.6)

In our toy example with two steps, this means selecting the best possible 𝑚greedy
1 ,

and then the best possible 𝑚greedy
2 given 𝑚greedy

1 , as in stagewise regression [130]. This

will not yield the best possible model achievable in two steps as in (6.3), but the first

step is guaranteed to be the best one possible.

246



Notice that 𝑐(𝑚greedy
1 ) = 0.42 < 1.13 = 𝑐(𝑚1), but 𝑐(𝑚greedy

2 ) = 0.39 > 0.25 =

𝑐(𝑚2). In other words, the first greedy model is much better, but the improvement

comes at the expense of the second step. Deciding which of the two paths 𝑚 and

𝑚greedy is more interpretable is a hard question. It highlights the tradeoff between

the desirable incrementality of the greedy approach and the cost of the final model.

𝑚1 (first step) 𝑚2 (second step)
Coef 1 Coef 2 𝑐(𝑚1) Coef 1 Coef 2 𝑐(𝑚2)

Opt., coef 1 first 2.12 0 1.13 2.12 -0.94 0.25
Opt., coef 2 first 0 -0.94 4.76 2.12 -0.94 0.25
Greedy 1.28 0 0.42 1.28 -0.18 0.39
Tradeoff 1.83 0 0.72 1.83 -0.68 0.27

(a) Interpretable path examples. Rows 1 and 2 present
paths 𝑚 and 𝑚′, where we add the coefficients of
the optimal solution in two possible orders. Row 3
presents the greedy approach 𝑚greedy and row 4 a so-
lution somewhere in between. Optimal MSEs for each
step are indicated in bold.

0.4 0.6 0.8 1.0
c(m1), MSE of first step

0.27

0.30

0.33

0.36

c(
m

2)
, M

SE
 o

f s
ec

on
d 

st
ep

opt. solution ( 0)
greedy ( )

(b) Tradeoff between the cost of
the first and second models of the
interpretable path.

Figure 6-4: Interpretability tradeoffs for toy problem (6.4).

In Figure 6-4a we present a comparison of the interpretable paths proposed thus

far for our toy problem. In addition, the last row presents another interpretable path

that is neither greedy nor optimal, accepting a slight sub-optimality in 𝑐(𝑚2) for a

significant improvement in 𝑐(𝑚1). This last model is just one among a continuum of

paths between 𝑚 and 𝑚greedy. Figure 6-4b shows the entire Pareto front between

𝑐(𝑚1) and 𝑐(𝑚2). The convexity of the Pareto front means we can significantly

improve the cost of the first step at small cost to the second (or vice versa).

6.4 A Coherent Interpretability Loss

In the previous section, we developed intuition regarding the interpretability of dif-

ferent paths. We now formalize this intuition to define a suitable interpretability

loss.

247



6.4.1 Coherent Path Interpretability Losses

According to the loss ℒcomplexity defined in Section 6.3.1, which generalizes many

notions of interpretability from the literature, a path is more interpretable if it is

shorter. In Section 6.3.2, we saw that the cost of individual models along the path

matters as well.

Sometimes, comparing the costs of intermediate models between two paths is easy

because the cost of each step along one path is at least as good as the cost of the

corresponding step in the other path. For example, it is reasonable to consider 𝑚

more interpretable than 𝑚′ because 𝑐(𝑚1) < 𝑐(𝑚′
1) and 𝑐(𝑚2) = 𝑐(𝑚′

2). In contrast,

comparing the interpretability of 𝑚 and 𝑚greedy is more difficult and user-specific,

because 𝑐(𝑚1) > 𝑐(𝑚greedy
1 ), but 𝑐(𝑚2) < 𝑐(𝑚greedy

2 ).

We now formalize this intuition into desirable properties of interpretability loss

functions. We first introduce the notion of a cost sequence, which provides a concise

way to refer to the costs of all the steps in an interpretable path. We then define

axioms for coherent interpretability losses.

Definition 3 (Cost sequence). Given an interpretable path of length 𝐾, denoted as

𝑚 ∈ 𝒫𝐾 , the cost sequence 𝑐(𝑚) ∈ RN is the infinite sequence (𝑐1, 𝑐2, · · · ) such that:

𝑐𝑘 =

⎧⎪⎨⎪⎩𝑐(𝑚𝑘), if 𝑘 ≤ 𝐾,

0, otherwise.

Definition 4 (Coherent Interpretability Loss). A path interpretability loss ℒ is co-

herent if the following conditions hold for any two interpretable paths 𝑚,𝑚′ ∈ 𝒫

with respective cost sequences 𝑐 and 𝑐′.

(a) If 𝑐 = 𝑐′, then ℒ(𝑚) = ℒ(𝑚′).

(b) (Weak Pareto dominance) If 𝑐𝑘 ≤ 𝑐′𝑘 ∀𝑘, then ℒ(𝑚) ≤ ℒ(𝑚′).

Condition (a) means that the interpretability of a path depends only on the se-

quence of costs along that path. Condition (b) formalizes the intuition described

248



before, that paths with fewer steps or better steps are more interpretable. For in-

stance, if we improve the cost of one step of a path while leaving all other steps

unchanged, we can only make the path more interpretable. Under any coherent in-

terpretability loss ℒ in toy example 6.4, 𝑚 is more interpretable than 𝑚′, but 𝑚

may be more or less interpretable than 𝑚greedy depending on the specific choice of

coherent interpretability loss.

In addition, consider a path 𝑚 ∈ 𝒫𝐾 and remove its last step to obtain a new

path 𝑚′ ∈ 𝒫𝐾−1. This is equivalent to setting the 𝐾-th element of the cost sequence

𝑐(𝑚) to zero. Since 𝑐(·) ≥ 0, we have that 𝑐(𝑚) ≤ 𝑐(𝑚), which implies ℒ(𝑚′) ≤

ℒ(𝑚). In other words, under a coherent interpretability loss, removing a step from

an interpretable path can only make the path more interpretable.

Remark 4. The path complexity ℒcomplexity(𝑚) = |𝑚| is a coherent path interpretabil-

ity loss.

Proof. If 𝑚 and 𝑚′ verify 𝑐(𝑚) = 𝑐(𝑚′), then trivially the two cost sequences

become zero after the same number of steps, so ℒcomplexity(𝑚) = ℒcomplexity(𝑚′).

If 𝑐(𝑚) ≤ 𝑐(𝑚′) and 𝑐(𝑚′) becomes zero after exactly 𝐾 steps, then 𝑐(𝑚) must

become zero after at most 𝐾 steps, so ℒcomplexity(𝑚) ≤ ℒcomplexity(𝑚′).

6.4.2 A Coherent Model Interpretability Loss

Axiom (b) of Definition 4 states that a path that dominates another path in terms of

the costs of each step must be at least as interpretable. This notion of weak Pareto

dominance suggests a natural path interpretability loss:

ℒ𝛼(𝑚) =

|𝑚|∑︁
𝑘=1

𝛼𝑘𝑐(𝑚𝑘).

In other words, the interpretability loss ℒ𝛾 of a path 𝑚 is the weighted sum of the

costs of all steps in the path. This loss function is trivially coherent and extremely

general. It is more accurate to specified by the infinite sequence of parameters 𝛼,

which specify the relative importance of the accuracy of each step in the model for

249



the particular application at hand.

Defining a family of interpretability losses with infinitely many parameters allows

for significant modeling flexibility, but it is also cumbersome and overly general.

We therefore propose to select 𝛼𝑘 = 𝛾𝑘 for all 𝑘, replacing the infinite sequence of

parameters (𝛼1, 𝛼2, . . .) with a single parameter 𝛾 > 0. In this case, following 6.1, we

propose the following coherent interpretability loss function on the space of models.

Definition 5 (Model interpretability). Given a model 𝑚 ∈ ℳ, its interpretability

loss ℒ𝛾(𝑚) is given by

ℒ𝛾(𝑚) =

⎧⎪⎪⎨⎪⎪⎩
∞, if 𝒫(𝑚) = ∅,

min
𝑚∈𝒫(𝑚)

ℒ𝛾(𝑚) =
|𝑚|∑︀
𝑘=1

𝛾𝑘𝑐(𝑚𝑘), otherwise.
(6.7)

By definition, ℒ𝛾 is a coherent interpretability loss, which favors more incremental

models or models with a low complexity. The parameter 𝛾 captures the tradeoff

between these two aspects of interpretability. Theorem 3 shows that with a particular

choice of 𝛾 one can recover the notion of model complexity introduced in Section 6.3.1,

or models that can be built in a greedy way.

Theorem 3 (Consistency of interpretability measure). Consider the specific weights

𝛾 = (𝛾𝑘)𝑘≥1 for a scalar 0 < 𝛾 <∞. Additionally assume that the cost 𝑐(·) is bounded

and nonnegative. Let ℒ𝛾 be the interpretability loss associated with the weights 𝛾.

(a) Let 𝑚+, 𝑚− ∈ℳ with ℒcomplexity(𝑚+) < ℒcomplexity(𝑚−) (i.e., 𝑚+ requires less

interpretable steps than 𝑚−), or ℒcomplexity(𝑚+) = ℒcomplexity(𝑚−) and 𝑐(𝑚+) <

𝑐(𝑚−).

lim
𝛾→∞
ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) = +∞. (6.8)

.

(b) Given 𝑚+,𝑚− ∈ 𝒫, if 𝑐(𝑚+) ⪯ 𝑐(𝑚−), where ⪯ represents the lexicographic

order on RN, then

lim
𝛾→0
ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ 0. (6.9)

250



Consequently, given models 𝑚+,𝑚− ∈ ℳ, if there is 𝑚+ ∈ 𝒫(𝑚+) such that

𝑐(𝑚+) ⪯ 𝑐(𝑚−) for all 𝑚− ∈ 𝒫(𝑚−), then

lim
𝛾→0
ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ 0. (6.10)

Intuitively, in the limit 𝛾 → +∞, (a) states that the most interpretable models

are the ones with minimal complexity, or minimal costs if their complexity is the

same. (b) states that in the limit 𝛾 → 0 the most interpretable models are the ones

that can be constructed with greedy steps. Definition 5 therefore generalizes existing

approaches and provides a good framework to model the tradeoffs of interpretability.

6.5 Interpretability Losses in Practice

Defining an interpretability loss brings a new perspective to the literature on inter-

pretability in machine learning. In this section, we discuss how this perspective can

be useful in practice. For the sake of generality, in the early part of this section we

work with the more general interpretability loss ℒ𝛼(·).

6.5.1 The Price of Interpretability

Given the metric of interpretability defined above, we can quantitatively discuss the

price of interpretability, i.e., the tradeoff between a model’s interpretability loss ℒ(𝑚)

and its cost 𝑐(𝑚). In other words, we want to compute models that are Pareto optimal

with respect to 𝑐(·) and ℒ𝛼(·), as in (6.2).

Computing these Pareto-optimal solutions can be challenging, as our definition of

model interpretability requires to optimize over paths of any length. Fortunately, the

only optimization problem we need to be able to solve is to find the most interpretable

path of a fixed length 𝐾, i.e.,

min
𝑚∈𝒫𝐾

ℒ𝛼(𝑚) =
𝐾∑︁
𝑘=1

𝛼𝑘𝑐(𝑚𝑘) (6.11)

251



Indeed, the following proposition shows that we can compute Pareto-optimal so-

lutions by solving a sequence of optimization problems (6.11) for various 𝐾 and 𝛼.

Proposition 4 (Price of interpretability). Pareto-optimal models that minimize the

interpretability loss ℒ𝛼 and the cost 𝑐(·) can be computed by solving the following

optimization problem:

min
𝐾≥0

(︃
min
m∈𝒫K

𝑐(𝑚𝐾) + 𝜆
𝐾∑︁
𝑘=1

𝛼𝑘𝑐(𝑚𝑘)

)︃
, (6.12)

where 𝜆 ∈ ℛ is a tradeoff parameter between cost and interpretability.

Figure 6-5: Pareto front between interpretability loss ℒ(𝑚) = ℒ𝛾(𝑚) (with 𝛾 = 1)
and cost 𝑐(𝑚) on the toy OLS problem (6.4), computed by varying 𝜆 in (6.12). The
dashed line represents Pareto-optimal solutions that cannot be computed by this
weighted-sum method. Note that the front is discontinuous, and that there is an
infinite number of Pareto-optimal models with two steps, but only one respectively
with one and zero steps. The inset table describes several interesting Pareto-optimal
models.

The proof of the proposition is provided in the appendix. Notice that the inner

252



minimization problem in (6.12) is simply problem (6.11) with appropriate modifica-

tions of the coefficients (𝛼1, . . . , 𝛼𝐾).

In the case of the toy OLS problem introduced in Section 6.3.2, the interpretable

step definition (adding a feature) and the number of features (two) mean that we only

need to consider 𝐾 ≤ 2 when solving (6.12). Indeed, any path of more than two steps

must repeat a model and will therefore be suboptimal. We can therefore use this

decomposition to compute the price of interpretability in this toy problem, with the

interpretability loss ℒ𝛾 chosen such that 𝛾 = 1. Figure 6-5 shows all Pareto-optimal

models with respect to performance cost and interpretability.

This curve is a useful result of the interpretable path framework. The ad hoc

nature of most discussions of interpretability typically precludes formal analysis of

the tradeoff between accuracy and interpretability. By defining the general framework

of interpretable paths and a natural family of interpretability loss functions, we can

understand exactly how much we gain or lose in terms of accuracy when we choose

a more or less interpretable model with respect to the selected loss. This is a central

question of the growing literature on interpretability in machine learning, and our

framework provides a principled way to answer it.

We note that this curve has many interesting features. In the discrete structure

of the Pareto front we can identify the combinatorial nature of our interpretability

definition, which refines the notion of model complexity (sparsity). In the continuous

parts of the front we recognize the tradeoffs of incrementality within a level of sparsity.

Readers will notice that the weighted sum of the objectives optimized in Theorem 4

does not necessarily recover the entire Pareto front, which is a well-known result in

multi-objective optimization [81].

Using Proposition 4, we can compute the price of interpretability for a range

of models and interpretability losses. For instance, we represent in Figure 6-6 the

interpretability-accuracy Pareto front on the toy OLS model with the interpretability

loss ℒ𝛾 for different values of 𝛾. We notice that as in Theorem 3, when 𝛾 grows large

our notion of interpretability reduces to sparsity (discrete Pareto curve), whereas

when 𝛾 grows small our notion of interpretability becomes closer to incrementality

253



0.5 1.0 1.5 2.0
c(m)

0.00

0.25

0.50

0.75

1.00
(m

)

k = 1
10k 1

3.98
0.3 3.98

0.3
Other Pareto-optimal solutions

(a) Here we choose 𝛾 = 0.1, therefore the
first steps are much more important than the
last steps, and we favor incremental/greedy
models (see second part of Theorem 3).

0.5 1.0 1.5 2.0
c(m)

0

1

2

3

(m
)

k = 10k 1

3.98
0.05 3.98

0.05
Other Pareto-optimal solutions

(b) Here we choose 𝛾 = 10, therefore the
cost of the intermediate steps much less im-
portant than the final models, and we favor
sparse models (see first part of Theorem 3).
Note that we almost only have 3 points in
the Pareto front, corresponding to the 3 pos-
sible levels of sparsity in this example.

Figure 6-6: Pareto fronts between model interpretability and cost in the same setting
as Figure 6-5, except that we change the definition of interpretability by changing the
values 𝛼𝑘.

(continuous Pareto curve).

6.5.2 Computational Considerations

In problem (6.4), the definition of an interpretable step led to a natural bound on the

maximum number of steps of any Pareto-optimal interpretable path. To solve (6.12)

we could therefore consider a finite number of problems of type (6.11). In other

settings or for other interpretable step definitions (such as one we introduce in Sec-

tion 6.6), there may be no such natural bound, and we may need to consider paths of

arbitrary lengths when solving (6.12). Proposition 5 provides a bound for the number

of problems of type (6.11) we need to consider in the general case.

Proposition 5. Assume there exist 𝑐min and 𝑐max such that 0 < 𝑐min ≤ 𝑐(𝑚) ≤ 𝑐max

for all 𝑚 ∈ℳ (positive and bounded cost function), and consider the interpretability

254



loss ℒ𝛾. If 𝛾 ≥ 1, then

𝐾opt := arg min
𝐾≥0

(︃
min
m∈𝒫K

𝑐(𝑚𝐾) + 𝜆

𝐾∑︁
𝑘=1

𝛾𝑘𝑐(𝑚𝑘)

)︃
≤ 𝐾max, (6.13)

where

𝐾max =

⎧⎪⎨⎪⎩
𝑐max

𝜆𝑐min
if 𝛾 = 1,

log
(︁
1+

(𝛾−1)𝑐max
𝜆𝛾𝑐min

)︁
log 𝛾

if 𝛾 > 1.

(6.14)

In other words, under the interpretability loss ℒ𝛾 with 𝛾 ≥ 1, we can find the

optimal solution of (6.12) by solving at most 𝐾max problems of type (6.11). The

proof of Proposition 5 is provided in the appendix.

A corollary of Proposition 5 is that we can write an optimization formulation of

problem (6.12) with a finite number of decision variables. For instance, we can for-

mulate the inner minimization problem with finitely many decision variables for each

𝐾 and then solve finitely many such problems. The tractability of this optimization

problem is application-dependent.

For example, by adapting the mixed-integer optimization formulation from Bert-

simas and Dunn [15], we can compute the price of interpretability for decision trees

of bounded depth by writing the following mixed-integer formulation of the inner

minimization problem in (6.12):

min
𝐾∑︁
𝑘=1

𝛾𝑘𝑓(𝑑𝑘𝑡 , 𝑎
𝑘
𝑡 , 𝑏

𝑘
𝑡 ) (6.15a)

s.t. (𝑑𝑘𝑡 , 𝑎
𝑘
𝑡 , 𝑏

𝑘
𝑡 ) ∈ 𝒯 ∀𝑘 ∈ [𝑘] (6.15b)∑︁

𝑡∈𝒯𝐿

𝑑𝑘𝑡 = 𝑘 ∀𝑘 ∈ [𝐾] (6.15c)

𝑎𝑘𝑡 ≤ 𝑎𝑘+1
𝑡 ∀𝑡 ∈ 𝒯𝐵, 𝑘 ∈ [𝐾 − 1] (6.15d)

𝑑𝑘𝑡 ≤ 𝑑𝑘+1
𝑡 ∀𝑡 ∈ 𝒯𝐵, 𝑘 ∈ [𝐾 − 1] (6.15e)

𝑏𝑘𝑡 − (1− 𝑑𝑘𝑡 ) ≤ 𝑏𝑘+1
𝑡 ≤ 𝑏𝑘𝑡 + (1− 𝑑𝑘𝑡 ) ∀𝑡 ∈ 𝒯𝐵, 𝑘 ∈ [𝐾 − 1], (6.15f)

where the variables 𝑑𝑘𝑡 , 𝑎𝑘𝑡 and 𝑏𝑘𝑡 define 𝐾 trees of depth at most 𝐷, and con-

255



5 10 15 20

Misclassification cost c(t)
0

2

4

6

8

In
te

rp
re

ta
bi

lit
y 

lo
ss

 
(t)

> 6.67
0.33 < 6.67

< 0.33

Figure 6-7: Price of interpretability for decision trees of depth at most 2 on the
simplified iris data-set.

straints (6.15c)-(6.15f) impose an interpretable path structure on the 𝐾 trees. The

set 𝒯𝐵 indicates the set of branching nodes of the trees, the variable 𝑑𝑘𝑡 indicates

whether branching node 𝑡 in tree 𝑘 is active, 𝑎𝑘𝑡 selects the variable along which to

perform the split at branching node 𝑡 in tree 𝑘, and 𝑏𝑘𝑡 is the split value at branching

node 𝑡 in tree 𝑘. The function 𝑓 is the objective value of the tree defined by these split

variables, and the set 𝒯 designates all the constraints to impose the tree structure for

each 𝑘 (constraint (6.15b) is equivalent to (24) from [15]). Constraint (6.15c) imposes

that tree 𝑘 must have exactly 𝑘 active splits, Constraint (6.15e) forces tree 𝑘 + 1 to

keep all the branching nodes of tree 𝑘, and constraints (6.15d) and (6.15f) force the

splits at these common branching nodes to be the same.

This formulation allows us to compute the price of interpretability on the simplified

iris data-set from Section 6.2. The resulting Pareto curve is shown in Figure 6-7. It

turns out the most interpretable tree with a misclassification error of 2 is 𝑡good, with

ℒ𝛾(𝑡good) = 9 (for 𝛾 = 1).

In general, mixed-integer optimization formulations such as (6.15) may not scale.

However, in many cases a provably optimal solution is not necessary and scalable

heuristics such as local improvement may be employed. We provide such an example

in Section 6.6.

256



6.5.3 Interpretable Paths and Human-in-the-Loop Analytics

Motivated by the idea that humans read models sequentially, we have used the frame-

work of interpretable paths to evaluate the interpretability of individual models.

Viewing an interpretable path as a nested sequence of models of increasing com-

plexity can be useful in the context of human-in-the-loop analytics.

Consider the problem of customer segmentation via clustering. Choosing the

number of customer types (𝑘) is not always obvious in practice and has to be selected

by a decision-maker. Solving the clustering problem with 𝑘 clusters and with 𝑘 + 1

clusters may lead to very different clusters. Alternatively, using interpretable steps,

we can force the solution with 𝑘 + 1 clusters to result from the splitting of one of the

clusters of the solution with 𝑘 clusters, for all 𝑘. The change between 𝑘 clusters and

𝑘 + 1 clusters becomes more simple and may facilitate the choice of 𝑘.

If we assume each 𝑘 can be chosen with equal probability for 𝑘 ≤ 10, the problem

of finding the sequence that minimizes the expected cost is:

min
𝑚∈𝒫10

1

10

10∑︁
𝑘=1

𝑐(𝑚𝑘), (6.16)

which is exactly the decision problem (6.11) with the weights 𝛼𝑘 = 0.1 for 𝑘 ≤ 10, and

𝛼𝑘 = 0 otherwise. This problem is related to studies in incremental approximation

algorithms [88] and prioritization [83], which are typically motivated by a notion of

interpretability which simplifies implementation for practitioners.

More generally, we can use interpretable paths to facilitate human-in-the-loop

model selection. Given a discrete distribution on the choice of 𝐾 :

𝑝𝑘 = P({𝑘 will be chosen by the decision maker}).

We can choose 𝛼𝑘 = 𝑝𝑘 and solve (6.11) to find paths 𝑚 that minimize the expected

cost E𝑘[𝑐(𝑚𝑘)].

257



6.6 Application: Linear Regression

6.6.1 Setting

In many applications, users of a predictive model are confronted with new data which

requires them to update their model. One way to do this is to throw out the old model

and train a new model using the new data. In the interest of continuity it may be of

interest to update the old model in a more interpretable way.

Using the framework presented in the previous section, it is easy to formulate

this problem mathematically. Given a model 𝑚0 (which designates our old model,

not 0 as previously), we would like to select a new model 𝑚 with lower cost, and an

interpretable path from 𝑚0 to 𝑚.

In the example of linear regression, the models are the weights 𝛽, with the following

interpretable steps:

𝒮(𝛽) = {𝛽′ ∈ R𝑑 : ‖𝛽 − 𝛽′‖0 ≤ 1}, (6.17)

which implies that a successor of 𝛽 differs from 𝛽 in at most one coordinate. This

step neighborhood function is similar to the one presented in the previous section.

The only difference is that in Section 2, we could not modify the value of a coefficient

once it had been set once, whereas in this case we can modify coefficients as often as

we like (but no more than one coefficient in each step). We select the interpretability

loss ℒ𝛾 with 𝛾 = 1 (meaning the costs of all steps matter equally). Given the step

function 𝒮 defined in (6.17), the convex quadratic cost function 𝑐(·), and the initial

regression coefficients 𝛽0, our goal is to be able to solve the optimization problem of

finding the optimal interpretable path of length 𝐾 (6.11), as we saw in Section 6.5

that it was enough to compute interpretability tradeoffs.

258



6.6.2 Algorithms

Optimal. It can be written as a convex integer optimization problem using special

ordered sets of type 1 (SOS-1 constraints).

min
𝛽𝑘

𝐾∑︁
𝑘=1

𝑐(𝛽𝑘) (6.18a)

s.t. SOS-1(𝛽𝑘+1 − 𝛽𝑘) 0 ≤ 𝑘 < 𝐾. (6.18b)

The SOS-1 constraint are just a generic way to describe our choice of step (6.17). For

reasonable problem sizes (𝑑 ≤ 10, 𝐾 ≤ 10 and any choice of 𝑛), this problem can be

solved exactly using a constrained convex solver such as Gurobi or CPLEX.

Local improvement. In higher-dimensional settings, or when 𝐾 grows large, the

formulation above may no longer scale. Thus it is of interest to develop a fast heuristic

for such instances.

A feasible solution 𝛽 = (𝛽1, · · · , 𝛽𝐾) to problem (6.18) can be written as a vector

of indices 𝑖 = (𝑖1, · · · , 𝑖𝐾) ∈ {1, . . . , 𝑑}𝐾 and a vector of values 𝛿 = (𝛿1, · · · , 𝛿𝐾) ∈ R𝐾 ,

such that for 0 ≤ 𝑘 < 𝐾,

(𝛽𝑘+1)𝑖 =

⎧⎪⎨⎪⎩(𝛽𝑘)𝑖 + 𝛿𝑘, if 𝑖 = 𝑖𝑘

(𝛽𝑘)𝑖, if 𝑖 ̸= 𝑖𝑘.

The vector of indices 𝑖 encodes which regression coefficients are modified at each

step in the interpretable path, while the sequence of values 𝛿 encodes the value of

each modified regression coefficient. Thus problem (6.18) can be rewritten as

min
𝑖

min
𝛿

𝐶 (𝑖, 𝛿) :=
𝐾∑︁
𝑘=1

𝑐

(︃
𝛽0 +

𝑘∑︁
𝑗=1

𝛿𝑗𝑒𝑖𝑗

)︃
, (6.19)

where 𝑒𝑖 designates the 𝑖-th unit vector. Notice that the inner minimization problem

is an “easy” convex quadratic optimization problem, while the outer minimization

problem is a “hard” combinatorial optimization problem. We propose the following

259



local improvement heuristic for the outer problem: given a first sequence of indices

𝑖 = 𝑖0, we randomly sample one step 𝜅 in the interpretable path. Keeping all 𝑖𝑘

constant for 𝑘 ̸= 𝜅, we iterate through all 𝑑 possible values of 𝑖𝜅 and obtain 𝑑 candidate

vectors 𝑖̂. For each candidate, we solve the inner minimization problem and keep the

one with lowest cost. The method is described in full detail as Algorithm 6, in the

more general case where we sample not one but 𝑞 steps from the interpretable path.

Algorithm 6 Local improvement heuristic. Inputs: regression cost function 𝑐(·);
starting vector of indices 𝑖0. Parameters: 𝑞 ∈ N controls the size of the neighborhood,
𝑇 ∈ N controls the number of iterations.
1: function LocalImprovement(𝑐(·), 𝑖0, 𝑞, 𝑇 )
2: for 1 ≤ 𝑡 ≤ 𝑇 do
3: 𝑖* ← 𝑖0

4: 𝛿* ← arg min𝛿 𝐶 (𝑖0, 𝛿)
5: 𝐶* ← 𝐶 (𝑖0, 𝛿*)
6: Randomly select 𝒦 = {𝜅1, . . . , 𝜅𝑞} ⊂ {1, . . . , 𝐾} ◁ subset of cardinality 𝑞

7: 𝑖̂← 𝑖*

8: 𝛿 ← 𝛿*

9: for (𝑓1, . . . , 𝑓𝑞) ∈ {1, . . . , 𝑑}𝑞 do
10: for 1 ≤ 𝑝 ≤ 𝑞 do
11: 𝑖̂𝜅𝑝 = 𝑓𝑝

12: 𝛿 ← arg min𝛿 𝐶
(︁
𝑖̂, 𝛿
)︁

13: if 𝐶
(︁
𝑖̂, 𝛿
)︁
< 𝐶* then

14: 𝐶* ← 𝐶
(︁
𝑖̂, 𝛿
)︁

15: 𝑖* ← 𝑖̂
16: 𝛿* ← 𝛿
17: return 𝑖*, 𝛿*

Each iteration of the local improvement heuristic above requires 𝑑𝑞 iterations of

the main loop (for most problems, this means only 𝑞 = 1 and sometimes 𝑞 = 2 are

realistic options).

Results

We now explore the results of the presented approach on a data-set from the 1998-1999

California test score data-set. Each data point represents a school, and the variable

of interest is the average standardized test score of students from that school. All

260



0.095 0.100 0.105 0.110 0.115 0.120
Cost c(m)

0.0

0.2

0.4

0.6
In

te
rp

re
ta

bi
lit

y 
lo

ss
 

(m
) 1.08 log( ) (K = 0)

1.23 log( ) 1.08 (K = 1)
1.67 log( ) 1.23 (K = 3)
2.02 log( ) 1.67 (K = 4)
2.38 log( ) 2.02 (K = 5)
2.98 log( ) 2.38 (K = 6)

log( ) 2.98 (K = 7)

(a) Full price curve

9.856×10 ² 9.858×10 ² 9.860×10 ² 9.862×10 ² 9.864×10 ²
Cost c(m)

0.3400

0.3405

0.3410

0.3415

0.3420

0.3425

In
te

rp
re

ta
bi

lit
y 

lo
ss

 
(m

) 1.67 log( ) 1.23 (K = 3)

(b) Zoom on small portion of price curve

Figure 6-8: Pareto-efficient models from the perspective of interpretability and cost.
Notice that the price curve is both discrete and continuous.

features are continuous and a full list is presented in Table 6-9a. Both the features

and the target variables are centered and rescaled to have unit variance.

In our example, we assume that we already have a regression model available to

predict the number of trips: it was trained using only the percentage of students

qualifying for a reduced-price lunch. This model has an MSE of 0.122 (compared to

an optimal MSE of 0.095). We would like to update this model in an interpretable

way given the availability of all features in the data-set.

The first thing we can do is explore the price of interpretability in this setting.

We can use the method presented in Section 6.5.1 to compute find Pareto efficient

interpretable models. The resulting price curve is shown in Figure 6-8.

Given this price curve, a good cost-interpretability tradeoff seems to be for log(𝜆) ≈

−1.65. This yields the new model (and associated interpretable path) shown in Fig-

ure 6-9b. This new model can be obtained from the old in just four steps. First we

add the district average income with a positive coefficient, then we correct the coeffi-

cient for reduced-price lunch students to account for this new feature, and finally we

add the percentage of English learners and the school’s per-student spending. The

final model has an MSE of 0.097 which is near-optimal. When we compare this path

to other methods (see Figure 6-9c) we see that our interpretable formulation allows

us to find a good tradeoff between a greedy, “every step must improve” formulation,

and a formulation that just sets the coefficients to their final values one by one.

261



Feature name Description

Enrollment Total enrollment
Teachers Number of teachers
CalWPct % receiving state aid
MealPct % with subsidized lunch
Computers Number of computers
CompStu Computers per student
ExpnStu Expenditure per student
StuTeach Student-teacher ratio
AvgInc Average income (district)
ELPct % English Learners

(a) Features of the test score data-
set.

Feature
Step MealPct AvgInc ELPct ExpnStu MSE

0 −0.87 - - - 0.122
1 −0.87 0.23 - - 0.122
2 −0.59 0.23 - - 0.117
3 −0.59 0.23 −0.18 - 0.099
4 −0.59 0.23 −0.18 0.07 0.097

(b) Path from old model to new model.

0 2 4 6 8 10
Step k

0.095

0.100

0.105

0.110

0.115

0.120

0.125

M
SE

 c
(m

k)

interpretable
stagewise
direct

(c) Comparison between interpretable path and other approaches

Figure 6-9: Example of a Pareto-efficient interpretable path. On the left we see the
benefits of each coefficient modification. On the right we compare the interpretable
path with two other possible paths. The first is the forward stagewise path which
greedily selects the best 𝑚𝑘+1 given 𝑚𝑘. The second is the “direct” path, which adds
the optimal least squares coefficients one by one (in the most interpretable order).
The direct method is only good when all the coefficients have been added, whereas the
greedy approach is good at first but then does not converge. The interpretable path
is willing to make some steps that do not improve the cost too much in preparation
for very cost-improving steps.

262



6.7 Conclusions

In this chapter, we have presented a simple optimization-based framework to model

the interpretability of machine learning models. Our framework provides a new way

to think about what interpretability means to users in different applications and

quantify how this meaning affects the tradeoff with predictive accuracy.

6.8 Appendix

6.8.1 Proof of Theorem 3

Proof of part (a). As 𝑐(·) is bounded, we have 𝑐max ∈ R such that 0 < 𝑐(·) ≤ 𝑐max.

Let 𝑚+ ∈ 𝒫(𝑚+) be a path of optimal length to the model 𝑚+, i.e., |𝑚+| =

ℒcomplexity(𝑚+). . Let 𝑚− ∈ 𝒫(𝑚−) be any path leading to 𝑚− (not necessarily of

optimal length). By assumption, we have |𝑚−| ≥ |𝑚+|, and by definition of model

interpretability, we have ℒ𝛾(𝑚+) ≤ ℒ𝛾(𝑚+). Therefore we obtain:

ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) (6.20)

=

|𝑚−|∑︁
𝑘=1

𝛾𝑘 𝑐(𝑚−
𝑘 )−

|𝑚+|∑︁
𝑘=1

𝛾𝑘 𝑐(𝑚+
𝑘 ) (6.21)

= 𝛾|𝑚+|

⎛⎝|𝑚+|−1∑︁
𝑘=1

1

𝛾|𝑚+|−𝑘

(︀
𝑐(𝑚−

𝑘 )− 𝑐(𝑚+
𝑘 )
)︀

+
(︁
𝑐(𝑚−

|𝑚+|)− 𝑐(𝑚+
|𝑚+|)

)︁⎞⎠
+ 𝛾|𝑚+|

⎛⎝ |𝑚−|∑︁
𝑘=|𝑚+|+1

𝛾𝑘−|𝑚+| 𝑐(𝑚−
𝑘 )

⎞⎠ (6.22)

≥ 𝛾|𝑚+|

⎛⎝−𝑐max

|𝑚+|−1∑︁
𝑘=1

1

𝛾|𝑚+|−𝑘
+
(︁
𝑐(𝑚−

|𝑚+|)− 𝑐(𝑚+)
)︁

+

|𝑚−|∑︁
𝑘=|𝑚+|+1

𝛾𝑘−|𝑚+| 𝑐(𝑚−
𝑘 )

⎞⎠
(6.23)

where (6.21) follows from the definition of model interpretability, (6.22) is just a

development of the previous equation, and (6.23) just bounds the first sum and uses

𝑚+
|𝑚+| = 𝑚+ for the middle term.

263



If ℒcomplexity(𝑚+) < ℒcomplexity(𝑚−), we have |𝑚+| < |𝑚−|, and therefore the last

sum in (6.23) is not empty and for 𝛾 ≥ 1 we can bound it:

|𝑚−|∑︁
𝑘=|𝑚+|+1

𝛾𝑘−|𝑚+| 𝑐(𝑚−
𝑘 ) ≥ 𝛾|𝑚−|−|𝑚+| 𝑐(𝑚−

|𝑚−|) ≥ 𝛾 𝑐(𝑚−). (6.24)

Therefore, for 𝛾 ≥ 1 we have:

ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ 𝛾|𝑚+|

⎛⎝𝛾 𝑐(𝑚−)− 𝑐(𝑚+)− 𝑐𝑚𝑎𝑥

|𝑚+|−1∑︁
𝑘=1

1

𝛾|𝑚+|−𝑘

⎞⎠ . (6.25)

This bound is valid for all the path 𝑚− leading to 𝑚−, in particular the one with

optimal interpretability loss, therefore we have (for 𝛾 ≥ 1):

ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ 𝛾|𝑚+|

⎛⎝𝛾 𝑐(𝑚−)− 𝑐(𝑚+)− 𝑐𝑚𝑎𝑥

|𝑚+|−1∑︁
𝑘=1

1

𝛾|𝑚+|−𝑘

⎞⎠ . (6.26)

which implies (as 𝑐(𝑚−) > 0):

lim
𝛾→+∞

ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) = +∞ (6.27)

We now look at the case ℒcomplexity(𝑚+) = ℒcomplexity(𝑚−) and 𝑐(𝑚+) < 𝑐(𝑚−).

For 𝛾 ≥ 1, we can easily bound parts of equation (6.23):

𝑐(𝑚−
|𝑚+|) +

|𝑚−|∑︁
𝑘=|𝑚+|+1

𝛾𝑘−|𝑚+| 𝑐(𝑚−
𝑘 ) ≥ 𝛾|𝑚−|−|𝑚+|𝑐(𝑚−

|𝑚−|) ≥ 𝑐(𝑚−). (6.28)

Putting it back into (6.23), we obtain (for 𝛾 ≥ 1)

ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ 𝛾|𝑚+|

⎛⎝(︀𝑐(𝑚−)− 𝑐(𝑚+)
)︀
− 𝑐𝑚𝑎𝑥

|𝑚+|−1∑︁
𝑘=1

1

𝛾|𝑚+|−𝑘

⎞⎠ . (6.29)

264



This bound is independent of the path 𝑚− leading to 𝑚−, therefore we have

ℒ𝛾(𝑚−)−ℒ𝛾(𝑚+) ≥ 𝛾|𝑚+|

⎛⎝(︀𝑐(𝑚−)− 𝑐(𝑚+)
)︀
− 𝑐𝑚𝑎𝑥

|𝑚+|−1∑︁
𝑘=1

1

𝛾|𝑚+|−𝑘

⎞⎠→𝛾→+∞ +∞,

(6.30)

which ends the proof of part (a) of Theorem 3.

Proof of part (b). Consider two paths 𝑚+,𝑚− ∈ 𝒫 , such that 𝑐(𝑚+) ⪯ 𝑐(𝑚−). By

definition of the lexicographic order, either the two paths are the same (in that case

the theorem is trivial), or there exist 𝐾 ≥ 1 such that:

⎧⎪⎨⎪⎩𝑐(𝑚+)𝑘 = 𝑐(𝑚−)𝑘 ∀𝑘 < 𝐾

𝑐(𝑚+)𝐾 < 𝑐(𝑚−)𝐾 .

We have:

ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) =

|𝑚−|∑︁
𝑘=1

𝛾𝑘 𝑐(𝑚−
𝑘 )−

|𝑚+|∑︁
𝑘=1

𝛾𝑘 𝑐(𝑚+
𝑘 ) (6.31)

=
∞∑︁
𝑘=1

𝛾𝑘
(︀
𝑐(𝑚−)𝑘 − 𝑐(𝑚+)𝑘

)︀
(6.32)

=
𝐾−1∑︁
𝑘=1

𝛾𝑘
(︀
𝑐(𝑚−)𝑘 − 𝑐(𝑚+)𝑘

)︀
+ 𝛾𝐾

(︀
𝑐(𝑚−)𝐾 − 𝑐(𝑚+)𝐾

)︀
+

∞∑︁
𝑘=𝐾+1

𝛾𝑘
(︀
𝑐(𝑚−)𝑘 − 𝑐(𝑚+)𝑘

)︀
(6.33)

= 𝛾𝐾

(︃
𝑐(𝑚−)𝐾 − 𝑐(𝑚+)𝐾 +

∞∑︁
𝑘=𝐾+1

𝛾𝑘−𝐾
(︀
𝑐(𝑚−)𝑘 − 𝑐(𝑚+)𝑘

)︀)︃
(6.34)

where (6.32) just applies the definition of the sequence 𝑐, and (6.34) uses 𝑐(𝑚+)𝑘 =

𝑐(𝑚−)𝑘 ∀𝑘 < 𝐾.

The term inside the parenthesis in (6.34) converges to 𝑐(𝑚−)𝐾 − 𝑐(𝑚+)𝐾 > 0

265



when 𝛾 → 0, as the paths are finite. Therefore

lim
𝛾→0
ℒ𝛾(𝑚−)− ℒ𝛾(𝑚+) ≥ 0, (6.35)

which proves (6.9). The very end of the theorem is an immediate consequence.

6.8.2 Proof of Proposition 4

Proof. First, a solution of

min
𝑚∈ℳ

(𝑐(𝑚) + 𝜆ℒ(𝑚))

is Pareto optimal between the cost 𝑐(·) and the interpretability ℒ𝛼(·) as it corresponds

to the minimization of a weighted sum of the objectives. Furthermore, we can write

min
𝑚∈ℳ

(𝑐(𝑚) + 𝜆ℒ𝛼(𝑚)) = min
𝑚∈ℳ

(︂
𝑐(𝑚) + 𝜆 min

𝑚∈𝒫(𝑚)
ℒ𝛼(𝑚)

)︂
= min

𝑚∈ℳ,𝑚∈𝒫(𝑚)
(𝑐(𝑚) + 𝜆ℒ𝛼(𝑚))

= min
𝑚∈ℳ,𝐾≥0,𝑚∈𝒫𝐾(𝑚)

(︃
𝑐(𝑚𝐾) + 𝜆

𝐾∑︁
𝑘=1

𝛼𝑘𝑐(𝑚𝑘)

)︃

= min
𝐾≥0,𝑚∈𝒫𝐾

(︃
𝑐(𝑚𝐾) + 𝜆

𝐾∑︁
𝑘=1

𝛼𝑘𝑐(𝑚𝑘)

)︃
.

6.8.3 Proof of Proposition 5

Proof. For any 𝐾 ≥ 0 and 𝜆 > 0, define the optimal objective

𝑧𝜆(𝐾) = min
𝑚∈𝒫𝐾

𝑐(𝑚𝐾) + 𝜆
𝐾∑︁
𝑘=1

𝛾𝑘𝑐(𝑚𝑘).

Because 𝑐(·) is bounded below by 𝑐min, we can write

𝑧𝜆(𝐾) ≥ 𝑐min + 𝜆
𝐾∑︁
𝑘=1

𝛾𝑘𝑐min ≥ 𝜆𝑐min

𝐾∑︁
𝑘=1

𝛾𝑘. (6.36)

266



By definition 𝑧𝜆(0) is the cost of the empty model, so by the boundedness of 𝑐(·), we

have 𝑧𝜆(0) ≤ 𝑐max. Consider first the case when 𝛾 = 1. Then (6.36) simplifies to

𝑧𝜆(𝐾) ≥ 𝜆𝐾𝑐min.

Setting 𝐾 ≥ 𝐾max := 𝑐max/(𝜆𝑐min) yields 𝑧𝜆(𝐾) ≥ 𝑐max ≥ 𝑍𝜆(0) and so the inter-

pretable path of length 0 has a better objective than any path of length at least 𝐾max.

Now consider 𝛾 > 1. In this case, (6.36) simplifies to

𝑧𝜆(𝐾) ≥ 𝜆𝑐min𝛾
1− 𝛾𝐾

1− 𝛾
.

Defining 𝐾max as in (6.14), we again see that the interpretable path of length 0 has a

better objective than any path of length at least 𝐾max, which completes the proof.

267



268



Chapter 7

Conclusions

We conclude this thesis by summarizing our main contributions and outlining poten-

tial directions of future research.

New transportation applications A large fraction of this work was related to

transportation applications: ride-sharing in Chapter 2, travel time estimation in

Chapter 3 and school transportation in Chapter 4. The latest technology develop-

ments, such as the use of smartphones with location tracking capability and the rise

of on-demand transportation, have created many opportunities for research in trans-

portation optimization. Almost every year brings new major transportation systems:

bike sharing, vehicle pooling, on-demand electric scooters, autonomous vehicles are

just a few examples ; and all of these systems present their own research challenges.

Indeed, as these systems become more centralized and data more available, there is

a significant optimization opportunity when managing the associated vehicle fleets.

And tractable optimization algorithms can directly lead to impact in this fast-moving

field.

A direction that we find particularly promising and interfaces well with this thesis

is the special case of hybrid static and dynamic transportation systems. That is, the

combination of static high-capacity transportation system such as buses and trains

with dynamic ones like ride-sharing in a multi-modal transportation network. These

problems are interestingly at the intersection of the design of static bus systems such

269



as the school bus routes presented in Chapter 4, and online decision making such as

the ride-sharing example presented in Chapter 2.

Opportunities in large-scale optimization In this thesis, we present many

application-specific large-scale optimization algorithms, often relying integer opti-

mization as a sub-routine. Chapter 2 present a backbone and local-backbone al-

gorithms for scheduling with time-windows. Chapter 3 finds solutions to the inverse

shortest path length problem by solving a sequence of second order cone problems.

Chapter 4 introduces the bi-objective routing decomposition algorithm for school bus

routing and also uses block coordinate descent to solve a generalized quadratic as-

signment problem. Chapter 5 studies the stochastic proximal algorithm. Chapter 6

uses integer optimization to create interpretable linear models.

A challenge of large-scale optimization is to be able to design scalable optimization

algorithms that are not application-specific, and can be easily implemented. Mixed-

integer programming formulation provides this flexibility, when it is tractable and

associated with state-of-the-art solvers. We saw in this thesis that there are actu-

ally many ways, through problem decompositions and optimization-based heuristics,

to retain the flexibility of this framework in a large-scale setting. For example, our

contribution in school bus routing interfaces well with all the variants of school trans-

portation settings, and this flexibility enables easier implementation. And we believe

there are significant research opportunities in this space. As a specific research di-

rection, we believe that the backbone and local-backbone algorithms presented

in Chapter 1 could be extended beyond the scheduling problem with time-windows.

These algorithms worked surprisingly well in the example of ride-sharing, and it could

also be interesting to theoretically understand the main reasons for this success.

People and algorithms After modeling a real-world problem using an optimiza-

tion framework, and after finding tractable optimization algorithms to solve this prob-

lem, implementation can still be a challenge. For example, Chapter 4 explores the

difficulties of using optimization algorithms for the operations of public schools dis-

270



tricts. One way to make this transition easier is to encourage communication between

optimization researchers and stakeholders. In this work, we chose to get involved in

the public policy aspect of choosing schools start times. This experience made us

realize the many opportunities of positive impact in public school district operations

and other public policy spheres for researchers that are willing to bridge the gap with

stakeholders.

But this process can be made easier if we can explain in simple terms our choices

of algorithms and models. This is why we introduced a general framework for creating

and optimizing model interpretability metrics in Chapter 6. This general framework

can be applied to a variety of machine learning and other optimization models, and

yield both exciting new applications and interesting optimization problems. We hope

that it will generate further research.

The final test of a theory is its capacity to solve the problems which

originated it.

([45] George Dantzig — Linear programming and extensions (1963))

271



272



Bibliography

[1] Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. The
boston public school match. American Economic Review, 95(2):368–371, 2005.

[2] MOSEK ApS. Mosek Solver Reference Manual, 2019.

[3] Hilal Asi and John C. Duchi. Stochastic (Approximate) Proximal Point Meth-
ods: Convergence, Optimality, and Adaptivity. arXiv Optimization and Control,
2018.

[4] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. Recent exact algo-
rithms for solving the vehicle routing problem under capacity and time window
constraints. European Journal of Operational Research, 218(1):1–6, 2012.

[5] Hamsa Bastani, Osbert Bastani, and Carolyn Kim. Interpreting Predictive
Models for Human-in-the-Loop Analytics. arXiv preprint arXiv:1705.08504,
pages 1–45, 2018.

[6] Amir Beck and Marc Teboulle. Gradient-based algorithms with applications
to signal-recovery problems. In Daniel P. Palomar and Yonina C. Eldar, edi-
tors, Convex Optimization in Signal Processing and Communications, chapter 1,
pages 42–88. Cambridge University Press, Cambridge, 2010.

[7] Russell Bent and Pascal Van Hentenryck. Scenario-Based Planning for Partially
Dynamic Vehicle Routing with Stochastic Customers. Operations Research,
52(6):977–987, 2004.

[8] Russell Bent and Pascal Van Hentenryck. Waiting and relocation strategies
in online stochastic vehicle routing. IJCAI International Joint Conference on
Artificial Intelligence, pages 1816–1821, 2007.

[9] Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. Dynamic
pickup and delivery problems. European Journal of Operational Research,
202:8–15, 2010.

[10] Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. A Hybrid
Tabu Search and Constraint Programming Algorithm for the Dynamic Dial-a-
Ride Problem. Journal on Computing, 24(3):343–355, 2012.

273



[11] Richard Berk. An impact assessment of machine learning risk forecasts on
parole board decisions and recidivism. Journal of Experimental Criminology,
13(2):193–216, 2017.

[12] Dimitri P. Bertsekas. Incremental proximal methods for large-scale convex op-
timization. Mathematical Programming, 129(2):163–195, oct 2011.

[13] Dimitris Bertsimas, Arthur Delarue, Patrick Jaillet, and Sébastien Martin.
Travel time estimation in the age of big data. Operations Research, 2019.

[14] Dimitris Bertsimas, Arthur Delarue, and Sebastien Martin. Optimizing schools’
start time and bus routes. Proceedings of the National Academy of Sciences,
116(13):201811462, 2019.

[15] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learn-
ing, 106(7):1039–1082, 2017.

[16] Dimitris Bertsimas, Patrick Jaillet, and Sébastien Martin. Online vehicle rout-
ing: The edge of optimization in large-scale applications. Operations Research,
67(1):143–162, 2019.

[17] Dimitris Bertsimas, Nathan Kallus, Alexander M. Weinstein, and Ying Daisy
Zhuo. Personalized diabetes management using electronic medical records. Di-
abetes Care, 40(2):210–217, 2017.

[18] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection
via a modern optimization lens. Annals of Statistics, 44(2):813–852, 2016.

[19] Dimitris Bertsimas and Bart Van Parys. Sparse High-Dimensional Regres-
sion: Exact Scalable Algorithms and Phase Transitions. arXiv preprint
arXiv:1709.10029, pages 1–22, 2017.

[20] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A
Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98, jan 2017.

[21] Pascal Bianchi. Ergodic Convergence of a Stochastic Proximal Point Algorithm.
SIAM Journal on Optimization, 26(4):2235–2260, 2016.

[22] Lawrence D Bodin and Lon Berman. Routing and scheduling of school buses
by computer. Transportation Science, 13(2):113–129, 1979.

[23] Michael Bögl, Karl F Doerner, and Sophie N Parragh. The school bus routing
and scheduling problem with transfers. Networks, 65(2):180–203, 2015.

[24] Leon Léon Bottou and Olivier Bousquet. The tradeoffs of large-scale learning.
Advances in neural information processing systems, 20:161–168, 2008.

[25] Jeffrey Braca, Julien Bramel, Bruce Posner, and David Simchi-Levi. A com-
puterized approach to the new york cityschool bus routing problem. IIE trans-
actions, 29(8):693–702, 1997.

274



[26] Julien Bramel and David Simchi-Levi. A location based heuristic for general
routing problems. Operations research, 43(4):649–660, 1995.

[27] Olli Bräysy and Michel Gendreau. Vehicle Routing Problem with Time Win-
dows, Part I: Route Construction and Local Search Algorithms. Transportation
Science, 39(1):104–118, 2005.

[28] Leo Breiman. Classification and regression trees. New York: Routledge, 1984.

[29] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[30] Leo Breiman. Statistical modeling: The two cultures. Statistical science,
16(3):199–231, 2001.

[31] Cristian Bucilǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-
pression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’06, page 535, New York, New
York, USA, 2006. ACM, ACM Press.

[32] S.E. Carrell, T. Maghakian, and J.E. West. A’s from ZZZZ’s? The causal
effect of school start time on academic achievement of adolescents. American
Economic Journal, 3(3):62–71, 2011.

[33] Bi Yu Chen, Hui Yuan, Qingquan Li, William H. K. Lam, Shih-Lung Shaw,
and Ke Yan. Map-matching algorithm for large-scale low-frequency floating car
data. Int. J. Geogr. Inf. Sci., 28(1):22–38, January 2014.

[34] Xiaoli Chen, May A Beydoun, and Youfa Wang. Is sleep duration associ-
ated with childhood obesity? a systematic review and meta-analysis. Obesity,
16(2):265–274, 2008.

[35] Xiaopan Chen, Yunfeng Kong, Lanxue Dang, Yane Hou, and Xinyue Ye. Exact
and metaheuristic approaches for a bi-objective school bus scheduling problem.
PloS one, 10(7):e0132600, 2015.

[36] Zhi-Long Chen and Hang Xu. Dynamic Column Generation for Dynamic Ve-
hicle Routing with Time Windows. Transportation Science, 40(1):74–88, 2006.

[37] Geoffrey L Cohen, Julio Garcia, Nancy Apfel, and Allison Master. Reduc-
ing the racial achievement gap: A social-psychological intervention. science,
313(5791):1307–1310, 2006.

[38] Benjamin Coifman. Estimating travel times and vehicle trajectories on freeways
using dual loop detectors. Transportation Research Part A: Policy and Practice,
36(4):351 – 364, 2002.

[39] Gérard Cornuéjols, George L Nemhauser, and Laurence A Wolsey. The uncapac-
itated facility location problem. Technical report, Carnegie-Mellon University,
Management Sciences research group, 1983.

275



[40] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better
Mini-Batch Algorithms via Accelerated Gradient Methods. In J Shawe-Taylor,
R S Zemel, P L Bartlett, F Pereira, and K Q Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 1647–1655. Curran Asso-
ciates, Inc., 2011.

[41] G. A. Croes. A method for solving traveling-salesman problems. Operations
Research, 6(6):791–812, 1958.

[42] Stephanie J Crowley, Christine Acebo, and Mary A Carskadon. Sleep, circadian
rhythms, and delayed phase in adolescence. Sleep medicine, 8(6):602–612, 2007.

[43] Giuseppe Curcio, Michele Ferrara, and Luigi De Gennaro. Sleep loss, learning
capacity and academic performance. Sleep medicine reviews, 10(5):323–337,
2006.

[44] Fred Danner and Barbara Phillips. Adolescent sleep, school start times, and
teen motor vehicle crashes. J Clin Sleep Med., 4(6):533, 2008.

[45] George Dantzig. Linear programming and extensions. Princeton university
press, 2016.

[46] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic Transparency via
Quantitative Input Influence :. In 2016 IEEE Symposium on Security and
Privacy, 2016.

[47] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal Dis-
tributed Online Prediction using Mini-Batches. arXiv preprint, dec 2010.

[48] Arthur Delarue and Sebastien Martin. SchoolBusRouting repository. https:
//github.com/mitschoolbus/SchoolBusRouting, 2018.

[49] Guy Desaulniers, Fausto Errico, Stefan Irnich, and Michael Schneider. Exact
Algorithms for Electric Vehicle-Routing Problems with Time Windows. Oper-
ations Research, 64(6):1388–1405, 2016.

[50] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis.
Time constrained routing and scheduling. Handbooks in operations research
and management science, 8:35–139, 1995.

[51] Robert Barkley Dial. A probabilistic multipath traffic assignment model which
obviates path enumeration. Transportation Research, 5(2):83–111, 1971.

[52] Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Algorithm aver-
sion: People erroneously avoid algorithms after seeing them err. Journal of
Experimental Psychology: General, 144(1):114, 2015.

[53] Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Overcoming algo-
rithm aversion: People will use imperfect algorithms if they can (even slightly)
modify them. Management Science, 64(3):1155–1170, nov 2016.

276

https://github.com/mitschoolbus/SchoolBusRouting
https://github.com/mitschoolbus/SchoolBusRouting


[54] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning. arXiv preprint arXiv:1702.08608, (Ml):1–13, 2017.

[55] Jack W. Dunn. Optimal Trees for Prediction and Prescription. PhD thesis,
MIT, 5 2018.

[56] Finley Edwards. Early to rise? the effect of daily start times on academic
performance. Economics of Education Review, 31(6):970–983, 2012.

[57] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least
Angle Regression. Annals of Statistics, 32(2):407–499, apr 2004.

[58] Katia Fredriksen, Jean Rhodes, Ranjini Reddy, and Niobe Way. Sleepless in
Chicago: tracking the effects of adolescent sleep loss during the middle school
years. Child development, 75(1):84–95, 2004.

[59] Alex A. Freitas. Comprehensible classification models. ACM SIGKDD Explo-
rations Newsletter, 15(1):1–10, 2014.

[60] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of sta-
tistical learning. Springer series in statistics New York, NY, USA:, 2001.

[61] Armin Fügenschuh. Solving a school bus scheduling problem with integer pro-
gramming. European Journal of Operational Research, 193(3):867–884, 2009.

[62] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic
for the vehicle routing problem. Management Science, 40(10):1276–1290, 1994.

[63] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining Explanations : An Approach to Evaluating
Interpretability of Machine Learning. arXiv preprint arXiv:1806.00069, 2018.

[64] Bryce Goodman and Seth Flaxman. European Union regulations on algorithmic
decision-making and a "right to explanation". arXiv preprint, pages 1–9, 2016.

[65] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019.

[66] Gabriel Gutiérrez-Jarpa, Guy Desaulniers, Gilbert Laporte, and Vladimir Mar-
ianov. A branch-and-price algorithm for the Vehicle Routing Problem with
Deliveries, Selective Pickups and Time Windows. European Journal of Opera-
tional Research, 206(2):341–349, 2010.

[67] Marco Hafner, Martin Stepanek, and Wendy M. Troxel. Later school start times
in the U.S.: An economic analysis. Technical report, RAND Corporation, 2017.

[68] Peter M Hahn, Bum-Jin Kim, Monique Guignard, J MacGregor Smith, and
Yi-Rong Zhu. An algorithm for the generalized quadratic assignment problem.
Computational Optimization and Applications, 40(3):351, 2008.

277



[69] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street
maps. IEEE Pervasive Computing, 7(4):12–18, October 2008.

[70] Flurin Hänseler, Nicholas Molyneaux, and Michel Bierlaire. Estimation of
pedestrian origin-destination demand in train stations. To appear in Trans-
portation Science, 2017.

[71] Hideki Hashimoto, Toshihide Ibaraki, Shinji Imahori, and Mutsunori Yagiura.
The vehicle routing problem with flexible time windows and traveling times.
Discrete Applied Mathematics, 154(16):2271–2290, 2006.

[72] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning Data Mining, Inference, and Prediction (12th printing).
Springer, 2009.

[73] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning
with sparsity: the lasso and generalizations. CRC press, 2015.

[74] A. Hofleitner, R. Herring, P. Abbeel, and A. Bayen. Learning the dynamics
of arterial traffic from probe data using a dynamic bayesian network. IEEE
Transactions on Intelligent Transportation Systems, 13(4):1679–1693, Dec 2012.

[75] Mark Horn. Fleet scheduling and dispatching for demand-responsive passenger
services. Transportation Research Part C: Emerging Technologies, 10(1):35–63,
2002.

[76] Cheng-Huang Hung. On the Inverse Shortest Path Length Problem. PhD thesis,
Georgia Tech ISyE, 2003.

[77] Patrick Jaillet, Jin Qi, and Melvyn Sim. Routing optimization under uncer-
tainty. Operations Research, 64(1):186–200, 2016.

[78] Patrick Jaillet and Michael Wagner. Generalized Online Routing: New Com-
petitive Ratios, Resource Augmentation, and Asymptotic Analyses. Operations
Research, 56(3):745–757, 2008.

[79] Erik Jenelius and Haris N. Koutsopoulos. Travel time estimation for urban road
networks using low frequency probe vehicle data. Transportation Research Part
B: Methodological, 53:64 – 81, 2013.

[80] Been Kim, Cynthia Rudin, and Julie Shah. The Bayesian Case Model: A
Generative Approach for Case-Based Reasoning and Prototype Classification.
In Neural Information Processing Systems (NIPS) 2014, 2014.

[81] I. Y. Kim and O. L. De Weck. Adaptive weighted-sum method for bi-objective
optimization: Pareto front generation. Structural and Multidisciplinary Opti-
mization, 29(2):149–158, 2005.

278



[82] Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil
Mullainathan. Human decisions and machine predictions. The quarterly journal
of economics, 133(1):237–293, 2017.

[83] Ali Koç and David P. Morton. Prioritization via Stochastic Optimization. Man-
agement Science, 61(3):586–603, 2014.

[84] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable deci-
sion sets: a joint framework for description and prediction. KDD ’16 Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 1:1675–1684, 2016.

[85] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Inter-
pretable & Explorable Approximations of Black Box Models. FAT/ML, jul
2017.

[86] Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan.
Interpretable classifiers using rules and bayesian analysis: Building a better
stroke prediction model. Annals of Applied Statistics, 9(3):1350–1371, 2015.

[87] Ruimin Li and Geoffrey Rose. Incorporating uncertainty into short-term travel
time predictions. Transportation Research Part C: Emerging Technologies,
19(6):1006 – 1018, 2011.

[88] Guolong Lin and David Williamson. A general approach for incremental ap-
proximation and hierarchical clustering. SIAM Journal Computing, 39(8):3633–
3669, 2010.

[89] Zachary C. Lipton. The Mythos of Model Interpretability. arXiv preprint
arXiv:1606.03490, 2016.

[90] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible Models for Clas-
sification and Regression. In Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 150–158.
ACM, 2012.

[91] Miles Lubin and Iain Dunning. Computing in operations research using Julia.
INFORMS Journal on Computing, 27(2):238–248, 2015.

[92] Shuo Ma, Yu Zheng, and Ouri Wolfson. Real-Time City-Scale Taxi Rideshar-
ing. IEEE Transactions on Knowledge and Data Engineering, 27(7):1782–1795,
2015.

[93] Susan Kohl Malone, Terra Ziporyn, and Alison M Buttenheim. Applying behav-
ioral insights to delay school start times. Sleep Health: Journal of the National
Sleep Foundation, 3(6):483–485, 2017.

[94] Sebastien Martin. TaxiSimulation Julia Package. https://github.com/
sebmart/TaxiSimulation, 2017. [Online; accessed 23-January-2018].

279

https://github.com/sebmart/TaxiSimulation
https://github.com/sebmart/TaxiSimulation


[95] Jo Craven McGinty. How do you fix school bus routes? call mit. The Wall
Street Journal, 8 2017.

[96] Fei Miao, Shuo Han, Shan Lin, John A Stankovic, Desheng Zhang, Sirajum Mu-
nir, Hua Huang, Tian He, and George Pappas. Taxi Dispatch With Real-Time
Sensing Data in Metropolitan Areas: A Receding Horizon Control Approach.
IEEE Transactions on Automation Science and Engineering, 13(2), 2016.

[97] Snežana Mitrović-Minić, Ramesh Krishnamurti, and Gilbert Laporte. Double-
horizon based heuristics for the dynamic pickup and delivery problem with time
windows. Transportation Research Part B: Methodological, 38(8):669–685, 2004.

[98] Eric Moulines and Francis R. Bach. Non-Asymptotic Analysis of Stochastic Ap-
proximation Algorithms for Machine Learning. In J Shawe-Taylor, R S Zemel,
P L Bartlett, F Pereira, and K Q Weinberger, editors, Advances in Neural In-
formation Processing Systems 24, pages 451–459. Curran Associates, Inc., 2011.

[99] Sendhil Mullainathan and Ziad Obermeyer. Does machine learning automate
moral hazard and error? American Economic Review, 107(5):476–480, 2017.

[100] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust Stochastic Approx-
imation Approach to Stochastic Programming. SIAM Journal on Optimization,
19(4):1574–1609, jan 2009.

[101] E. Nikolova and N. E. Stier-Moses. A mean-risk model for the traffic assignment
problem with stochastic travel times. Operations Research, 62(2):366–382, 2014.

[102] NYC. New york city taxi & limousine commission - trip record data. http:
//www.nyc.gov/html/tlc/html/about/trip_record_data.shtml, 2017. Ac-
cessed: 2017-02-12.

[103] Dan O’Brien. MIT’s "Quantum Team" wins first-ever
BPS transportation challenge with revolutionary computer
model. https://www.bostonpublicschools.org/site/default.
aspx?PageType=3&DomainID=4&ModuleInstanceID=14&ViewID=
6446EE88-𝜎2

bD30C-𝜎
2
b497E-𝜎

2
b9316-𝜎

2
b3F8874B3E108&FlexDataID=12431,

July 2017.

[104] Masayo Ota, Huy Vo, Cí Audio Silva, and Juliana Freire. STaRS: Simulating
Taxi Ride Sharing at Scale. IEEE Transactions on Big Data, pages 1–1, 2016.

[105] Masayo Ota, Huy Vo, Claudio Silva, and Juliana Freire. A scalable approach
for data-driven taxi ride-sharing simulation. In Proceedings - 2015 IEEE In-
ternational Conference on Big Data, IEEE Big Data 2015, pages 888–897, dec
2015.

[106] Judith Owens, Darrel Drobnich, Allison Baylor, and Daniel Lewin. School start
time change: An in-depth examination of school districts in the united states.
Mind, Brain, and Education, 8(4):182–213, 2014.

280

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.bostonpublicschools.org/site/default.aspx?PageType=3&DomainID=4&ModuleInstanceID=14&ViewID=6446EE88-D30C-497E-9316-3F8874B3E108&FlexDataID=12431
https://www.bostonpublicschools.org/site/default.aspx?PageType=3&DomainID=4&ModuleInstanceID=14&ViewID=6446EE88-D30C-497E-9316-3F8874B3E108&FlexDataID=12431
https://www.bostonpublicschools.org/site/default.aspx?PageType=3&DomainID=4&ModuleInstanceID=14&ViewID=6446EE88-D30C-497E-9316-3F8874B3E108&FlexDataID=12431


[107] Judith A Owens, Katherine Belon, and Patricia Moss. Impact of delaying school
start time on adolescent sleep, mood, and behavior. Archives of pediatrics &
adolescent medicine, 164(7):608–614, 2010.

[108] Neal Parikh and Stephen Boyd. Proximal Algorithms. Foundations and
Trends R○ in Optimization, 1(3):127–239, 2014.

[109] Junhyuk Park and Byung-In Kim. The school bus routing problem: A review.
European Journal of operational research, 202(2):311–319, 2010.

[110] Junhyuk Park, Hyunchul Tae, and Byung-In Kim. A post-improvement pro-
cedure for the mixed load school bus routing problem. European Journal of
Operational Research, 217(1):204–213, 2012.

[111] Parag A Pathak and Peng Shi. Simulating alternative school choice options in
Boston - Technical appendix. Technical report, MIT School Effectiveness and
Inequality Initiative, 2013.

[112] Andrei Patrascu and Ion Necoara. Nonasymptotic convergence of stochastic
proximal point methods for constrained convex optimization. Journal of Ma-
chine Learning Research, 18(198):1–42, 2018.

[113] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés Medaglia. A
Review of Dynamic Vehicle Routing Problems. Cirrelt-2011-62, pages 0–28,
2011.

[114] Michal Pióro, Yoann Fouquet, Dritan Nace, and Michael Poss. Optimizing flow
thinning protection in multicommodity networks with variable link capacity.
Operations Research, 64(2):273–289, 2016.

[115] B. T. Polyak and A. B. Juditsky. Acceleration of Stochastic Approximation
by Averaging. SIAM Journal on Control and Optimization, 30(4):838–855, jul
1992.

[116] Jean-Yves Potvin and Jean-Marc Rousseau. An Exchange Heuristic for Route-
ing Problems with Time Windows. The Journal of the Operational Research
Society, 46(12):1433–1446, 1995.

[117] Mohammed Quddus and Simon Washington. Shortest path and vehicle trajec-
tory aided map-matching for low frequency GPS data. Transportation Research
Part C: Emerging Technologies, 55:328 – 339, 2015.

[118] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust
You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data min-
ing, pages 1135–1144, 2016.

[119] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The
Annals of Mathematical Statistics, 22(3):400–407, sep 1951.

281



[120] R. Tyrrell Rockafellar. Monotone Operators and the Proximal Point Algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898, aug 1976.

[121] Ernest K Ryu and Stephen Boyd. Stochastic proximal iteration: a non-
asymptotic improvement upon stochastic gradient descent. 2014.

[122] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven Stro-
gatz, and Carlo Ratti. Quantifying the benefits of vehicle pooling with shareabil-
ity networks. Proceedings of the National Academy of Sciences, 111(37):13290–4,
2014.

[123] Patrick Schittekat, Marc Sevaux, and Kenneth Sorensen. A mathematical for-
mulation for a school bus routing problem. In Intl Conf on Serv Syst and Serv
Mgmt, volume 2, pages 1552–1557. IEEE, 2006.

[124] Johannes Schneider, Christine Froschhammer, Ingo Morgenstern, Thomas Hus-
slein, and Johannes Maria Singer. Searching for backbones -an efficient parallel
algorithm for the traveling salesman problem. Computer Physics Communica-
tions, 96:173–188, 1996.

[125] David Sharfenberg. Computers can solve your problems. you may not like the
answer. The Boston Globe (data analysis by Sebastien Martin and Arthur
Delarue), 9 2018.

[126] Rebecca Shuster. 2018-19 school bell times equity impact. https:
//www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/
Domain/2389/Equity%20Analysis.pdf, December 2017.

[127] Barbara M Smith and Anthony Wren. A bus crew scheduling system using a set
covering formulation. Transportation Research Part A: General, 22(2):97–108,
1988.

[128] Michela Spada, Michel Bierlaire, and Th M Liebling. Decision-aiding methodol-
ogy for the school bus routing and scheduling problem. Transportation Science,
39(4):477–490, 2005.

[129] Elizabeth A. Sullivan. Order on school start time realignment. https:
//www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/
Domain/162/starttimesmotion.pdf, December 2017.

[130] Jonathan Taylor and Robert J. Tibshirani. Statistical learning and selective
inference. Proceedings of the National Academy of Sciences, 112(25):7629–7634,
jun 2015.

[131] Robert J. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

282

https://www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/Domain/2389/Equity%20Analysis.pdf
https://www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/Domain/2389/Equity%20Analysis.pdf
https://www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/Domain/2389/Equity%20Analysis.pdf
https://www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/Domain/162/starttimesmotion.pdf
https://www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/Domain/162/starttimesmotion.pdf
https://www.bostonpublicschools.org/cms/lib/MA01906464/Centricity/Domain/162/starttimesmotion.pdf


[132] Panos Toulis, Dustin Tran, and Edoardo M. Airoldi. Towards Stability and
Optimality in Stochastic Gradient Descent. In Arthur Gretton and Christian C
Robert, editors, Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Re-
search, pages 1290–1298, Cadiz, Spain, may 2016. PMLR.

[133] Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized
medical scoring systems. Machine Learning, 102(3):349–391, 2016.

[134] Hongjian Wang, Zhenhui Li, Yu-Hsuan Kuo, and Dan Kifer. A simple baseline
for travel time estimation using large-scale trip data. CoRR, abs/1512.08580,
2015.

[135] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. AUGEM: Automat-
ically Generate High Performance Dense Linear Algebra Kernels on x86 CPUs.
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 25:1—-25:12, 2013.

[136] Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a path using
sparse trajectories. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 25–34. KDD 2014,
August 2014.

[137] Yinhai Wang and Nancy L Nihan. Freeway Traffic Speed Estimation Using
Single Loop Outputs. Transportation Research Record: Journal of the Trans-
portation Research Board, 1727(1):9, 2000.

[138] Colin Wenzel. Optimale schulanfangszeiten zur entlastung des nahverkehrs in
der stadt nürnberg. Angewandte Mathematik und Optimierung Schriftenreihe
(AMOS), 2016.

[139] Anne G. Wheaton, Gabrielle A. Ferro, and Janet B. Croft. School start times
for middle school and high school students - united states, 2011–12 school year.
Technical Report Vol. 64 No. 30, CDC, August 2015.

[140] Greg Wiggan. Race, school achievement, and educational inequality: Toward a
student-based inquiry perspective. Review of Educational Research, 77(3):310–
333, 2007.

[141] K.I. Wong and Michael Bell. The Optimal Dispatching of Taxis under Conges-
tion : a Rolling Horizon Approach. Advanced Transportation, 40(2):203–220,
2005.

[142] Zhihai Xiang, Chengbin Chu, and Haoxun Chen. A fast heuristic for solving
a large-scale static dial-a-ride problem under complex constraints. European
Journal of Operational Research, 174(2):1117–1139, 2006.

[143] Ci Yang. Data-driven modeling of taxi trip demand and supply in New York
City. PhD thesis, Rutgers University, 2015.

283



[144] Hongyu Yang, Cynthia Rudin, and Margo Seltzer. Scalable Bayesian Rule Lists.
In Proceedings of the 34th International Conference on Machine Learning, 2017.

[145] Jian Yang, Patrick Jaillet, and Hani Mahmassani. Real-Time Multivehicle
Truckload Pickup and Delivery Problems. Transportation Science, 38:135–148,
2004.

[146] Liwei Zeng, Sunil Chopra, and Karen Smilowitz. The covering path problem
on a grid. arXiv preprint arXiv:1709.07485, 2017.

[147] Xianyuan Zhan, Samiul Hasan, Satish V. Ukkusuri, and Camille Kamga. Urban
link travel time estimation using large-scale taxi data with partial information.
Transportation Research Part C: Emerging Technologies, 33:37 – 49, 2013.

[148] Rick Zhang, Federico Rossi, and Marco Pavone. Routing Autonomous Vehicles
in Congested Transportation Networks: Structural Properties and Coordination
Algorithms. Proceedings of Robotics: Science and Systems, 2016.

[149] Tong Zhang and Tong. Solving large-scale linear prediction problems using
stochastic gradient descent algorithms. In Twenty-first international conference
on Machine learning - ICML ’04, page 116, New York, New York, USA, 2004.
ACM Press.

284


	Introduction
	The Impact of Optimization in Transportation
	Online Vehicle Routing for Ride-Sharing
	Optimizing Schools' Start Time and Bus Routes

	Algorithms for Large-Scale Optimization
	Optimization Solvers in Practice
	Scalable and Practical Travel Time Estimation
	The Stochastic Proximal Point Algorithm

	Bridging the Gap Between Optimization and Implementation
	The Impact of Visualization and Software
	The Interface with Policy
	Model Interpretability

	Thesis Outline and Main Contributions
	Chapter 2 - Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications
	Chapter 3 - Travel Time Estimation in the Age of Big Data
	Chapter 4 - Optimizing Schools' Start Time and Bus Routes
	Chapter 5 - The Benefits of the Stochastic Proximal Point Algorithm
	Chapter 6 - The Price of Interpretability


	Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications
	Introduction
	Related Work
	Our Contributions

	The Online Taxi Routing Problem
	Model and Data
	Decisions
	Interpretation

	Offline Routing: the Edge of Optimality
	A Re-Optimization Approach to Online Taxi Routing
	Offline Solution Methods
	Application on Synthetic Data
	The Edge of Optimality

	Scaling Optimization to Real-World Applications
	Sparsifying the Flow Graph
	The Backbone Algorithm
	The Local Backbone Algorithm
	Taxi Routing in NYC
	Offline Results for Large-Scale Taxi Routing

	Online Taxi Routing in NYC
	Re-optimization and Warm-Starts
	Online Solution Methods
	Experiments and Results

	Conclusions
	Extensions
	Impact

	Appendix
	Insertions and Greedy Heuristic 
	Local-Improvement and 2-OPT


	Travel Time Estimation in the Age of Big Data
	Introduction
	The Need for a Generalized Approach to Travel Time Estimation
	Our Contributions

	Methodology
	Problem Statement: Estimating Travel Times From Data
	MIO Formulation
	Iterative Path Generation

	Solving Large-Scale Problems
	Adapting the shortest path constraint
	Towards a Convex Objective
	A Tractable Algorithm
	A General Model

	Performance on Synthetic Data
	Synthetic Networks and Virtual Data
	Results

	Performance on Real-World Data
	A Large-Scale Data Framework
	Applying a Discrete Model to Real-World Data
	Evaluating Results at the Scale of the City
	Impact of Data Density and Comparison with Data-Driven Methods

	Conclusions

	Optimizing Schools' Start Time and Bus Routes
	School Transportation: A BiRD's Eye View
	Single-School Problem
	Routing Multiple Schools
	Evaluating the Routing Algorithm
	Application in Boston

	Formulating the STSP
	Transportation Costs
	Optimizing
	Evaluating three-tier systems

	Bell Times in Practice
	Gridlock
	The Greater Good
	Application in Boston

	Technical Details: BiRD Routing Algorithm
	Stop Assignment
	Single-School Routing
	Scenario Selection
	Bus Scheduling

	Technical Details: Routing Experiments
	Synthetic Experiments and Results
	Comparison with Existing Methods

	Technical Details: Bell Time Selection
	Transportation Costs
	Bell Time Optimization on Synthetic Data
	GQAP-Representable Objectives
	Boston Community Survey

	Conclusion

	The Benefits of the Stochastic Proximal Point Algorithm
	Introduction
	Existing Work on Stochastic Proximal Point Methods
	Contributions

	Setting
	Stochastic Convex Quadratic Optimization
	Algorithms

	Benefits of Proximal: One Dimension
	Setting and Simplifications
	Optimal Step Schedule
	Deterministic Curvature, Random Gradient
	Random Curvature, Deterministic Gradient
	General Case

	Benefits of Proximal: Ordinary Least Squares
	Setting
	Algorithms
	Experiment
	Parameter Analysis

	Proximal Tractability
	Low Dimensions
	High Dimensions, the Ap-prox Algorithm


	The Price of Interpretability
	Introduction
	Interpretable Machine Learning
	Contributions

	A Sequential View of Model Construction
	Selecting a Model
	Interpretable Steps

	The Tradeoffs of Interpretability
	From paths to models
	Incrementality

	A Coherent Interpretability Loss
	Coherent Path Interpretability Losses
	A Coherent Model Interpretability Loss

	Interpretability Losses in Practice
	The Price of Interpretability
	Computational Considerations
	Interpretable Paths and Human-in-the-Loop Analytics

	Application: Linear Regression
	Setting
	Algorithms

	Conclusions
	Appendix
	Proof of Theorem 3
	Proof of Proposition 4
	Proof of Proposition 5


	Conclusions

